BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

541 related articles for article (PubMed ID: 35231850)

  • 1. Generating 3D TOF-MRA volumes and segmentation labels using generative adversarial networks.
    Subramaniam P; Kossen T; Ritter K; Hennemuth A; Hildebrand K; Hilbert A; Sobesky J; Livne M; Galinovic I; Khalil AA; Fiebach JB; Frey D; Madai VI
    Med Image Anal; 2022 May; 78():102396. PubMed ID: 35231850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesizing anonymized and labeled TOF-MRA patches for brain vessel segmentation using generative adversarial networks.
    Kossen T; Subramaniam P; Madai VI; Hennemuth A; Hildebrand K; Hilbert A; Sobesky J; Livne M; Galinovic I; Khalil AA; Fiebach JB; Frey D
    Comput Biol Med; 2021 Apr; 131():104254. PubMed ID: 33618105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward Sharing Brain Images: Differentially Private TOF-MRA Images With Segmentation Labels Using Generative Adversarial Networks.
    Kossen T; Hirzel MA; Madai VI; Boenisch F; Hennemuth A; Hildebrand K; Pokutta S; Sharma K; Hilbert A; Sobesky J; Galinovic I; Khalil AA; Fiebach JB; Frey D
    Front Artif Intell; 2022; 5():813842. PubMed ID: 35586223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets.
    Fashandi H; Kuling G; Lu Y; Wu H; Martel AL
    Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vessel segmentation from volumetric images: a multi-scale double-pathway network with class-balanced loss at the voxel level.
    Chen Y; Fan S; Chen Y; Che C; Cao X; He X; Song X; Zhao F
    Med Phys; 2021 Jul; 48(7):3804-3814. PubMed ID: 33969487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain tumor segmentation using synthetic MR images - A comparison of GANs and diffusion models.
    Usman Akbar M; Larsson M; Blystad I; Eklund A
    Sci Data; 2024 Feb; 11(1):259. PubMed ID: 38424097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
    Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A
    Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A coarse-to-fine cascade deep learning neural network for segmenting cerebral aneurysms in time-of-flight magnetic resonance angiography.
    Chen M; Geng C; Wang D; Zhou Z; Di R; Li F; Piao S; Zhang J; Li Y; Dai Y
    Biomed Eng Online; 2022 Sep; 21(1):71. PubMed ID: 36163014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-supervised learning framework with shape encoding for neonatal ventricular segmentation from 3D ultrasound.
    Szentimrey Z; Al-Hayali A; de Ribaupierre S; Fenster A; Ukwatta E
    Med Phys; 2024 Jun; ():. PubMed ID: 38857570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-informed cardiac magnetic resonance image synthesis through conditional generative adversarial networks.
    Amirrajab S; Al Khalil Y; Lorenz C; Weese J; Pluim J; Breeuwer M
    Comput Med Imaging Graph; 2022 Oct; 101():102123. PubMed ID: 36174308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GP-GAN: Brain tumor growth prediction using stacked 3D generative adversarial networks from longitudinal MR Images.
    Elazab A; Wang C; Gardezi SJS; Bai H; Hu Q; Wang T; Chang C; Lei B
    Neural Netw; 2020 Dec; 132():321-332. PubMed ID: 32977277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing classification of cells procured from bone marrow aspirate smears using generative adversarial networks and sequential convolutional neural network.
    Hazra D; Byun YC; Kim WJ
    Comput Methods Programs Biomed; 2022 Sep; 224():107019. PubMed ID: 35878483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated fibroglandular tissue segmentation in breast MRI using generative adversarial networks.
    Ma X; Wang J; Zheng X; Liu Z; Long W; Zhang Y; Wei J; Lu Y
    Phys Med Biol; 2020 May; 65(10):105006. PubMed ID: 32155611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of AI-Based Single-View 3D Reconstruction Methods for an Industrial Application.
    Hartung J; Dold PM; Jahn A; Heizmann M
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the usability of synthetic data for improving the robustness of deep learning-based segmentation of cardiac magnetic resonance images.
    Al Khalil Y; Amirrajab S; Lorenz C; Weese J; Pluim J; Breeuwer M
    Med Image Anal; 2023 Feb; 84():102688. PubMed ID: 36493702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auto-segmentation of pelvic organs at risk on 0.35T MRI using 2D and 3D Generative Adversarial Network models.
    Vagni M; Tran HE; Romano A; Chiloiro G; Boldrini L; Zormpas-Petridis K; Kawula M; Landry G; Kurz C; Corradini S; Belka C; Indovina L; Gambacorta MA; Placidi L; Cusumano D
    Phys Med; 2024 Mar; 119():103297. PubMed ID: 38310680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose.
    Wang Y; Yu B; Wang L; Zu C; Lalush DS; Lin W; Wu X; Zhou J; Shen D; Zhou L
    Neuroimage; 2018 Jul; 174():550-562. PubMed ID: 29571715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3DGAUnet: 3D Generative Adversarial Networks with a 3D U-Net Based Generator to Achieve the Accurate and Effective Synthesis of Clinical Tumor Image Data for Pancreatic Cancer.
    Shi Y; Tang H; Baine MJ; Hollingsworth MA; Du H; Zheng D; Zhang C; Yu H
    Cancers (Basel); 2023 Nov; 15(23):. PubMed ID: 38067200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FetalGAN: Automated Segmentation of Fetal Functional Brain MRI Using Deep Generative Adversarial Learning and Multi-Scale 3D U-Net.
    De Asis-Cruz J; Krishnamurthy D; Jose C; Cook KM; Limperopoulos C
    Front Neurosci; 2022; 16():887634. PubMed ID: 35747213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards Generating Realistic Wrist Pulse Signals Using Enhanced One Dimensional Wasserstein GAN.
    Chang J; Hu F; Xu H; Mao X; Zhao Y; Huang L
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.