These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35231936)

  • 1. Comparison of the Representational Power of Random Forests, Binary Decision Diagrams, and Neural Networks.
    Kumano S; Akutsu T
    Neural Comput; 2022 Mar; 34(4):1019-1044. PubMed ID: 35231936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Approximation of smooth functionals using deep ReLU networks.
    Song L; Liu Y; Fan J; Zhou DX
    Neural Netw; 2023 Sep; 166():424-436. PubMed ID: 37549610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Random Sketching for Neural Networks With ReLU.
    Wang D; Zeng J; Lin SB
    IEEE Trans Neural Netw Learn Syst; 2021 Feb; 32(2):748-762. PubMed ID: 32275612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous approximation of a smooth function and its derivatives by deep neural networks with piecewise-polynomial activations.
    Belomestny D; Naumov A; Puchkin N; Samsonov S
    Neural Netw; 2023 Apr; 161():242-253. PubMed ID: 36774863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integral representations of shallow neural network with rectified power unit activation function.
    Abdeljawad A; Grohs P
    Neural Netw; 2022 Nov; 155():536-550. PubMed ID: 36166980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Differentiable Random Forests for Age Estimation.
    Shen W; Guo Y; Wang Y; Zhao K; Wang B; Yuille A
    IEEE Trans Pattern Anal Mach Intell; 2021 Feb; 43(2):404-419. PubMed ID: 31449007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forward propagation dropout in deep neural networks using Jensen-Shannon and random forest feature importance ranking.
    Heidari M; Moattar MH; Ghaffari H
    Neural Netw; 2023 Aug; 165():238-247. PubMed ID: 37307667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tucker network: Expressive power and comparison.
    Liu Y; Pan J; Ng MK
    Neural Netw; 2023 Mar; 160():63-83. PubMed ID: 36621171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On joint parameterizations of linear and nonlinear functionals in neural networks.
    Atto AM; Galichet S; Pastor D; Méger N
    Neural Netw; 2023 Mar; 160():12-21. PubMed ID: 36592526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theory of deep convolutional neural networks III: Approximating radial functions.
    Mao T; Shi Z; Zhou DX
    Neural Netw; 2021 Dec; 144():778-790. PubMed ID: 34688019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Representational Gradient Boosting: Backpropagation in the Space of Functions.
    Valdes G; Friedman JH; Jiang F; Gennatas ED
    IEEE Trans Pattern Anal Mach Intell; 2022 Dec; 44(12):10186-10195. PubMed ID: 34941500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep networks are effective encoders of periodicity.
    Szymanski L; McCane B
    IEEE Trans Neural Netw Learn Syst; 2014 Oct; 25(10):1816-27. PubMed ID: 25291735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discontinuities in recurrent neural networks.
    Gavaldá R; Siegelmann HT
    Neural Comput; 1999 Apr; 11(3):715-46. PubMed ID: 10085427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Changeover Detection in Industry 4.0 Environments with Machine Learning.
    Miller E; Borysenko V; Heusinger M; Niedner N; Engelmann B; Schmitt J
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approximation of classifiers by deep perceptron networks.
    Kůrková V; Sanguineti M
    Neural Netw; 2023 Aug; 165():654-661. PubMed ID: 37364474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Comparison of artificial neural network with compatible biomass model for predicting aboveground biomass of individual tree].
    Liang RT; Wang YF; Qiu SY; Sun YJ; Xie YH
    Ying Yong Sheng Tai Xue Bao; 2022 Jan; 33(1):9-16. PubMed ID: 35224920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of random forests method to predict the retention indices of some polycyclic aromatic hydrocarbons.
    Goudarzi N; Shahsavani D; Emadi-Gandaghi F; Chamjangali MA
    J Chromatogr A; 2014 Mar; 1333():25-31. PubMed ID: 24529953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The geometry of representational drift in natural and artificial neural networks.
    Aitken K; Garrett M; Olsen S; Mihalas S
    PLoS Comput Biol; 2022 Nov; 18(11):e1010716. PubMed ID: 36441762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Features Guided Face Super-Resolution via Hybrid Model of Deep Learning and Random Forests.
    Liu ZS; Siu WC; Chan YL
    IEEE Trans Image Process; 2021; 30():4157-4170. PubMed ID: 33819156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.