These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35231936)

  • 21. Neural networks for link prediction in realistic biomedical graphs: a multi-dimensional evaluation of graph embedding-based approaches.
    Crichton G; Guo Y; Pyysalo S; Korhonen A
    BMC Bioinformatics; 2018 May; 19(1):176. PubMed ID: 29783926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparison of the conditional inference survival forest model to random survival forests based on a simulation study as well as on two applications with time-to-event data.
    Nasejje JB; Mwambi H; Dheda K; Lesosky M
    BMC Med Res Methodol; 2017 Jul; 17(1):115. PubMed ID: 28754093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expressive power of ReLU and step networks under floating-point operations.
    Park Y; Hwang G; Lee W; Park S
    Neural Netw; 2024 Jul; 175():106297. PubMed ID: 38643619
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biologically plausible deep learning - But how far can we go with shallow networks?
    Illing B; Gerstner W; Brea J
    Neural Netw; 2019 Oct; 118():90-101. PubMed ID: 31254771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep neural networks with a set of node-wise varying activation functions.
    Jang J; Cho H; Kim J; Lee J; Yang S
    Neural Netw; 2020 Jun; 126():118-131. PubMed ID: 32203875
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests.
    Maroco J; Silva D; Rodrigues A; Guerreiro M; Santana I; de Mendonça A
    BMC Res Notes; 2011 Aug; 4():299. PubMed ID: 21849043
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient representation of quantum many-body states with deep neural networks.
    Gao X; Duan LM
    Nat Commun; 2017 Sep; 8(1):662. PubMed ID: 28939812
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep Representational Similarity Learning for Analyzing Neural Signatures in Task-based fMRI Dataset.
    Yousefnezhad M; Sawalha J; Selvitella A; Zhang D
    Neuroinformatics; 2021 Jul; 19(3):417-431. PubMed ID: 33057876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neonatal Seizure Detection Using Deep Convolutional Neural Networks.
    Ansari AH; Cherian PJ; Caicedo A; Naulaers G; De Vos M; Van Huffel S
    Int J Neural Syst; 2019 May; 29(4):1850011. PubMed ID: 29747532
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uncovering feature interdependencies in high-noise environments with stepwise lookahead decision forests.
    Donick D; Lera SC
    Sci Rep; 2021 Apr; 11(1):9238. PubMed ID: 33927260
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Geometry of Energy Landscapes and the Optimizability of Deep Neural Networks.
    Becker S; Zhang Y; Lee AA
    Phys Rev Lett; 2020 Mar; 124(10):108301. PubMed ID: 32216422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient Approximation of High-Dimensional Functions With Neural Networks.
    Cheridito P; Jentzen A; Rossmannek F
    IEEE Trans Neural Netw Learn Syst; 2022 Jul; 33(7):3079-3093. PubMed ID: 33513112
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of an IoT Architecture Based on a Deep Neural Network against Cyber Attacks for Automated Guided Vehicles.
    Elsisi M; Tran MQ
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960561
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Towards a mathematical framework to inform neural network modelling via polynomial regression.
    Morala P; Cifuentes JA; Lillo RE; Ucar I
    Neural Netw; 2021 Oct; 142():57-72. PubMed ID: 33984736
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep forest.
    Zhou ZH; Feng J
    Natl Sci Rev; 2019 Jan; 6(1):74-86. PubMed ID: 34691833
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks.
    Hsieh CH; Lu RH; Lee NH; Chiu WT; Hsu MH; Li YC
    Surgery; 2011 Jan; 149(1):87-93. PubMed ID: 20466403
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Artificial neural networks: Modeling tree survival and mortality in the Atlantic Forest biome in Brazil.
    Rocha SJSSD; Torres CMME; Jacovine LAG; Leite HG; Gelcer EM; Neves KM; Schettini BLS; Villanova PH; Silva LFD; Reis LP; Zanuncio JC
    Sci Total Environ; 2018 Dec; 645():655-661. PubMed ID: 30029140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rotation of random forests for genomic and proteomic classification problems.
    Stiglic G; Rodriguez JJ; Kokol P
    Adv Exp Med Biol; 2011; 696():211-21. PubMed ID: 21431561
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of deciduous broadleaf forests mountain using satellite data using neural network method near Caspian Sea in North of Iran.
    Hashemi SA
    An Acad Bras Cienc; 2016; 88(4):2357-2362. PubMed ID: 27991967
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Random Forest Regressor-Based Approach for Detecting Fault Location and Duration in Power Systems.
    El Mrabet Z; Sugunaraj N; Ranganathan P; Abhyankar S
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.