BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35231969)

  • 1. [A pace recognition method for exoskeleton wearers based on support vector machine-hidden Markov model].
    Hu D; Liu Z; Chen L; Wang Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):84-91. PubMed ID: 35231969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A real-time stable-control gait switching strategy for lower-limb rehabilitation exoskeleton.
    Guo Z; Wang C; Song C
    PLoS One; 2020; 15(8):e0238247. PubMed ID: 32853239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proportional myoelectric and compensating control of a cable-conduit mechanism-driven upper limb exoskeleton.
    Xiao F
    ISA Trans; 2019 Jun; 89():245-255. PubMed ID: 30711342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait Phase Detection for Lower-Limb Exoskeletons using Foot Motion Data from a Single Inertial Measurement Unit in Hemiparetic Individuals.
    Sánchez Manchola MD; Pinto Bernal MJ; Munera M; Cifuentes CA
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ambulatory activity classification with dendogram-based support vector machine: Application in lower-limb active exoskeleton.
    Mazumder O; Kundu AS; Lenka PK; Bhaumik S
    Gait Posture; 2016 Oct; 50():53-59. PubMed ID: 27585182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous motion estimation of lower limbs based on deep belief networks and random forest.
    Wang F; Lu J; Fan Z; Ren C; Geng X
    Rev Sci Instrum; 2022 Apr; 93(4):044106. PubMed ID: 35489877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Human action and road condition recognition based on the inertial information].
    Wang Y; Chen H; Yin Z; Yu H; Meng Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2018 Aug; 35(4):621-630. PubMed ID: 30124027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical Extraction and Feature Fusion for Multi-Mode Signals in a Measurement System for Patients in Rehabilitation Exoskeleton.
    Yang C; Wei Q; Wu X; Ma Z; Chen Q; Wang X; Wang H; Fan W
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30087290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Online sparse Gaussian process based human motion intent learning for an electrically actuated lower extremity exoskeleton.
    Long Y; Du ZJ; Chen CF; Dong W; Wang WD
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():919-924. PubMed ID: 28813938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of Inertial Sensors in a Lower Limb Robotic Exoskeleton.
    Calle-Siguencia J; Callejas-Cuervo M; García-Reino S
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human Body Mixed Motion Pattern Recognition Method Based on Multi-Source Feature Parameter Fusion.
    Song J; Zhu A; Tu Y; Wang Y; Arif MA; Shen H; Shen Z; Zhang X; Cao G
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31963751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensors and algorithms for locomotion intention detection of lower limb exoskeletons.
    Wang D; Gu X; Yu H
    Med Eng Phys; 2023 Mar; 113():103960. PubMed ID: 36966000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Neural Network-Based Gait Phase Classification Method Using Sensors Equipped on Lower Limb Exoskeleton Robots.
    Jung JY; Heo W; Yang H; Park H
    Sensors (Basel); 2015 Oct; 15(11):27738-59. PubMed ID: 26528986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate recognition of lower limb ambulation mode based on surface electromyography and motion data using machine learning.
    Zhou B; Wang H; Hu F; Feng N; Xi H; Zhang Z; Tang H
    Comput Methods Programs Biomed; 2020 Sep; 193():105486. PubMed ID: 32402846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review of adaptive control for stroke lower limb exoskeleton rehabilitation robot based on motion intention recognition.
    Su D; Hu Z; Wu J; Shang P; Luo Z
    Front Neurorobot; 2023; 17():1186175. PubMed ID: 37465413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lower Limb Locomotion Activity Recognition of Healthy Individuals Using Semi-Markov Model and Single Wearable Inertial Sensor.
    Li H; Derrode S; Pieczynski W
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of Limb Joint Angles Based on Multi-Source Signals by GS-GRNN for Exoskeleton Wearer.
    Xie H; Li G; Zhao X; Li F
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible lower limb exoskeleton systems: A review.
    Meng Q; Zeng Q; Xie Q; Fei C; Kong B; Lu X; Wang H; Yu H
    NeuroRehabilitation; 2022; 50(4):367-390. PubMed ID: 35147568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lower Limb Exoskeleton for Rehabilitation with Flexible Joints and Movement Routines Commanded by Electromyography and Baropodometry Sensors.
    Rosales-Luengas Y; Espinosa-Espejel KI; Lopéz-Gutiérrez R; Salazar S; Lozano R
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and analysis of a lightweight lower extremity exoskeleton with novel compliant ankle joints.
    He Y; Liu J; Li F; Cao W; Wu X
    Technol Health Care; 2022; 30(4):881-894. PubMed ID: 34657860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.