These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35231970)

  • 1. [Fatigue analysis of upper limb rehabilitation based on surface electromyography signal and motion capture].
    Xu Z; Lu J; Pan W; He K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):92-102. PubMed ID: 35231970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of algorithms to quantify muscle fatigue in upper limb muscles based on sEMG signals.
    Kahl L; Hofmann UG
    Med Eng Phys; 2016 Nov; 38(11):1260-1269. PubMed ID: 27727120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Studies on the non-fatigue specificity of the fatigue-related sEMG signal parameters].
    Wang J; Yang HC; Liu JH
    Space Med Med Eng (Beijing); 2004 Feb; 17(1):39-43. PubMed ID: 15005116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of upper limb muscle fatigue based on surface electromyography.
    Zhou Q; Chen Y; Ma C; Zheng X
    Sci China Life Sci; 2011 Oct; 54(10):939-44. PubMed ID: 22038006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Relationship between surface electromyographic signal (sEMG) changes and subjective assessment of muscle fatigue during isometric contractions].
    Wang DM; Wang J; Ge LZ
    Space Med Med Eng (Beijing); 2004 Jun; 17(3):201-4. PubMed ID: 15920848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of biceps brachii sEMG signal using Multiscale Fuzzy Approximate Entropy.
    Navaneethakrishna M; Karthick PA; Ramakrishnan S
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7881-4. PubMed ID: 26738119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fuzzy approximate entropy analysis of chaotic and natural complex systems: detecting muscle fatigue using electromyography signals.
    Xie HB; Guo JY; Zheng YP
    Ann Biomed Eng; 2010 Apr; 38(4):1483-96. PubMed ID: 20099031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of complexity of EMG signals between a normal subject and a patient after stroke--a case study.
    Ao D; Sun R; Song R
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4965-8. PubMed ID: 24110849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of surface electromyography recording time interval without muscle fatigue effect for biceps brachii muscle during maximum voluntary contraction.
    Soylu AR; Arpinar-Avsar P
    J Electromyogr Kinesiol; 2010 Aug; 20(4):773-6. PubMed ID: 20211568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of ECG Artifacts Affects Respiratory Muscle Fatigue Detection-A Simulation Study.
    Kahl L; Hofmann UG
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between perceived exertion and mean power frequency of the EMG signal from the upper trapezius muscle during isometric shoulder elevation.
    Hummel A; Läubli T; Pozzo M; Schenk P; Spillmann S; Klipstein A
    Eur J Appl Physiol; 2005 Oct; 95(4):321-6. PubMed ID: 16096843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative variability in muscle activation amplitude, muscle oxygenation, and muscle thickness: Changes with dynamic low-load elbow flexion fatigue and relationships in young and older females.
    Bailey CA; Yoon S; Côté JN
    J Electromyogr Kinesiol; 2021 Aug; 59():102553. PubMed ID: 34010758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanomyogram and electromyogram responses of upper limb during sustained isometric fatigue with varying shoulder and elbow postures.
    Mamaghani NK; Shimomura Y; Iwanaga K; Katsuura T
    J Physiol Anthropol Appl Human Sci; 2002 Jan; 21(1):29-43. PubMed ID: 11938607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and classification of upper limb motions using PCA.
    Veer K; Vig R
    Biomed Tech (Berl); 2018 Mar; 63(2):191-196. PubMed ID: 28306516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upper Limb Movement Classification Via Electromyographic Signals and an Enhanced Probabilistic Network.
    Burns A; Adeli H; Buford JA
    J Med Syst; 2020 Aug; 44(10):176. PubMed ID: 32829419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Real-Time Algorithm to Estimate Shoulder Muscle Fatigue Based on Surface EMG Signal For Static and Dynamic Upper Limb Tasks.
    Boyer M; Bouyer L; Roy JS; Campeau-Lecours A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():100-106. PubMed ID: 34891249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees.
    Li X; Samuel OW; Zhang X; Wang H; Fang P; Li G
    J Neuroeng Rehabil; 2017 Jan; 14(1):2. PubMed ID: 28061779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Vertical Lifting Distance on Upper-Body Muscle Fatigue.
    Fang N; Zhang C; Lv J
    Int J Environ Res Public Health; 2021 May; 18(10):. PubMed ID: 34065333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complexity analysis of EMG signals for patients after stroke during robot-aided rehabilitation training using fuzzy approximate entropy.
    Sun R; Song R; Tong KY
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1013-9. PubMed ID: 24240006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lumbar paraspinal muscle fatigability in repetitive isoinertial loading: EMG spectral indices, Borg scale and endurance time.
    Kankaanpää M; Taimela S; Webber CL; Airaksinen O; Hänninen O
    Eur J Appl Physiol Occup Physiol; 1997; 76(3):236-42. PubMed ID: 9286603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.