These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 35231982)

  • 21. Adaptive neural network classifier for decoding MEG signals.
    Zubarev I; Zetter R; Halme HL; Parkkonen L
    Neuroimage; 2019 Aug; 197():425-434. PubMed ID: 31059799
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comprehensive review of EEG-based brain-computer interface paradigms.
    Abiri R; Borhani S; Sellers EW; Jiang Y; Zhao X
    J Neural Eng; 2019 Feb; 16(1):011001. PubMed ID: 30523919
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery.
    Koo B; Lee HG; Nam Y; Kang H; Koh CS; Shin HC; Choi S
    J Neurosci Methods; 2015 Apr; 244():26-32. PubMed ID: 24797225
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impacts of simplifying articulation movements imagery to speech imagery BCI performance.
    Guo Z; Chen F
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36630714
    [No Abstract]   [Full Text] [Related]  

  • 25. [A review of researches on electroencephalogram decoding algorithms in brain-computer interface].
    Zhou X; Xu M; Xiao X; Chen L; Gu X; Ming D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Oct; 36(5):856-861. PubMed ID: 31631636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Filter bank sinc-convolutional network with channel self-attention for high performance motor imagery decoding.
    Chen J; Wang D; Yi W; Xu M; Tan X
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36763992
    [No Abstract]   [Full Text] [Related]  

  • 27. Real-Time Navigation in Google Street View
    Yang L; Van Hulle MM
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772744
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigating the effects of visual distractors on the performance of a motor imagery brain-computer interface.
    Emami Z; Chau T
    Clin Neurophysiol; 2018 Jun; 129(6):1268-1275. PubMed ID: 29677690
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Ethics considerations on brain-computer interface technology].
    Zhang Z; Zhao X; Ma Y; Ding P; Nan W; Gong A; Fu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Apr; 40(2):358-364. PubMed ID: 37139769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MNE Scan: Software for real-time processing of electrophysiological data.
    Esch L; Sun L; Klüber V; Lew S; Baumgarten D; Grant PE; Okada Y; Haueisen J; Hämäläinen MS; Dinh C
    J Neurosci Methods; 2018 Jun; 303():55-67. PubMed ID: 29621570
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An intra-neural microstimulation system for ultra-high field magnetic resonance imaging and magnetoencephalography.
    Glover PM; Watkins RH; O'Neill GC; Ackerley R; Sanchez-Panchuelo R; McGlone F; Brookes MJ; Wessberg J; Francis ST
    J Neurosci Methods; 2017 Oct; 290():69-78. PubMed ID: 28743633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensor Modalities for Brain-Computer Interface Technology: A Comprehensive Literature Review.
    Martini ML; Oermann EK; Opie NL; Panov F; Oxley T; Yaeger K
    Neurosurgery; 2020 Feb; 86(2):E108-E117. PubMed ID: 31361011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrating EEG and MEG Signals to Improve Motor Imagery Classification in Brain-Computer Interface.
    Corsi MC; Chavez M; Schwartz D; Hugueville L; Khambhati AN; Bassett DS; De Vico Fallani F
    Int J Neural Syst; 2019 Feb; 29(1):1850014. PubMed ID: 29768971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Review on brain-computer interface technologies in healthcare.
    Karikari E; Koshechkin KA
    Biophys Rev; 2023 Oct; 15(5):1351-1358. PubMed ID: 37974976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis.
    Vourvopoulos A; Bermúdez I Badia S
    J Neuroeng Rehabil; 2016 Aug; 13(1):69. PubMed ID: 27503007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hybrid mental tasks based human computer interface via integration of pronunciation and motor imagery.
    Tong J; Wei X; Dong E; Sun Z; Du S; Duan F
    J Neural Eng; 2022 Nov; 19(5):. PubMed ID: 36228578
    [No Abstract]   [Full Text] [Related]  

  • 38. Interface, interaction, and intelligence in generalized brain-computer interfaces.
    Gao X; Wang Y; Chen X; Gao S
    Trends Cogn Sci; 2021 Aug; 25(8):671-684. PubMed ID: 34116918
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A self-paced BCI prototype system based on the incorporation of an intelligent environment-understanding approach for rehabilitation hospital environmental control.
    Liu Y; Liu Y; Tang J; Yin E; Hu D; Zhou Z
    Comput Biol Med; 2020 Mar; 118():103618. PubMed ID: 32174331
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A magnetoencephalography dataset during three-dimensional reaching movements for brain-computer interfaces.
    Yeom HG; Kim JS; Chung CK
    Sci Data; 2023 Aug; 10(1):552. PubMed ID: 37607973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.