These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35231982)

  • 41. Review on brain-computer interface technologies in healthcare.
    Karikari E; Koshechkin KA
    Biophys Rev; 2023 Oct; 15(5):1351-1358. PubMed ID: 37974976
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A magnetoencephalography dataset during three-dimensional reaching movements for brain-computer interfaces.
    Yeom HG; Kim JS; Chung CK
    Sci Data; 2023 Aug; 10(1):552. PubMed ID: 37607973
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis.
    Vourvopoulos A; Bermúdez I Badia S
    J Neuroeng Rehabil; 2016 Aug; 13(1):69. PubMed ID: 27503007
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interface, interaction, and intelligence in generalized brain-computer interfaces.
    Gao X; Wang Y; Chen X; Gao S
    Trends Cogn Sci; 2021 Aug; 25(8):671-684. PubMed ID: 34116918
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hybrid mental tasks based human computer interface via integration of pronunciation and motor imagery.
    Tong J; Wei X; Dong E; Sun Z; Du S; Duan F
    J Neural Eng; 2022 Nov; 19(5):. PubMed ID: 36228578
    [No Abstract]   [Full Text] [Related]  

  • 47. MEG Sensor Selection for Neural Speech Decoding.
    Dash D; Wisler A; Ferrari P; Davenport EM; Maldjian J; Wang J
    IEEE Access; 2020; 8():182320-182337. PubMed ID: 33204579
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A self-paced BCI prototype system based on the incorporation of an intelligent environment-understanding approach for rehabilitation hospital environmental control.
    Liu Y; Liu Y; Tang J; Yin E; Hu D; Zhou Z
    Comput Biol Med; 2020 Mar; 118():103618. PubMed ID: 32174331
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Decoding the Debate: A Comparative Study of Brain-Computer Interface and Neurofeedback.
    Mahrooz MH; Fattahzadeh F; Gharibzadeh S
    Appl Psychophysiol Biofeedback; 2024 Mar; 49(1):47-53. PubMed ID: 37540396
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Brain-Computer Interface: Advancement and Challenges.
    Mridha MF; Das SC; Kabir MM; Lima AA; Islam MR; Watanobe Y
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502636
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A brain computer interface-based explorer.
    Bai L; Yu T; Li Y
    J Neurosci Methods; 2015 Apr; 244():2-7. PubMed ID: 24975290
    [TBL] [Abstract][Full Text] [Related]  

  • 52. State-of-the-Art on Brain-Computer Interface Technology.
    Peksa J; Mamchur D
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447849
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Brain-computer interfaces: Definitions and principles.
    Wolpaw JR; Millán JDR; Ramsey NF
    Handb Clin Neurol; 2020; 168():15-23. PubMed ID: 32164849
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The potential of MR-Encephalography for BCI/Neurofeedback applications with high temporal resolution.
    Lührs M; Riemenschneider B; Eck J; Andonegui AB; Poser BA; Heinecke A; Krause F; Esposito F; Sorger B; Hennig J; Goebel R
    Neuroimage; 2019 Jul; 194():228-243. PubMed ID: 30910728
    [TBL] [Abstract][Full Text] [Related]  

  • 55. What External Variables Affect Sensorimotor Rhythm Brain-Computer Interface (SMR-BCI) Performance?
    Horowitz AJ; Guger C; Korostenskaja M
    HCA Healthc J Med; 2021; 2(3):143-162. PubMed ID: 37427002
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Motor-Imagery-Based Brain-Computer Interface Using Signal Derivation and Aggregation Functions.
    Fumanal-Idocin J; Wang YK; Lin CT; Fernandez J; Sanz JA; Bustince H
    IEEE Trans Cybern; 2022 Aug; 52(8):7944-7955. PubMed ID: 34033571
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mapping and decoding cortical engagement during motor imagery, mental arithmetic, and silent word generation using MEG.
    Youssofzadeh V; Roy S; Chowdhury A; Izadysadr A; Parkkonen L; Raghavan M; Prasad G
    Hum Brain Mapp; 2023 Jun; 44(8):3324-3342. PubMed ID: 36987698
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Application of BCI systems in neurorehabilitation: a scoping review.
    Bamdad M; Zarshenas H; Auais MA
    Disabil Rehabil Assist Technol; 2015; 10(5):355-64. PubMed ID: 25560222
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Macroscopic brain dynamics beyond contralateral primary motor cortex for movement prediction.
    Yeo TS; Kim JS; Kim HJ; Chung CK
    Neuroimage; 2024 Aug; 297():120727. PubMed ID: 39069222
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Immediate brain plasticity after one hour of brain-computer interface (BCI).
    Nierhaus T; Vidaurre C; Sannelli C; Mueller KR; Villringer A
    J Physiol; 2021 May; 599(9):2435-2451. PubMed ID: 31696938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.