These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 35232037)
1. Sparse identification of nonlinear dynamical systems via non-convex penalty least squares. Lu Y; Xu W; Jiao Y; Yuan M Chaos; 2022 Feb; 32(2):023113. PubMed ID: 35232037 [TBL] [Abstract][Full Text] [Related]
2. Pattern Discovery in Brain Imaging Genetics via SCCA Modeling with a Generic Non-convex Penalty. Du L; Liu K; Yao X; Yan J; Risacher SL; Han J; Guo L; Saykin AJ; Shen L; Sci Rep; 2017 Oct; 7(1):14052. PubMed ID: 29070790 [TBL] [Abstract][Full Text] [Related]
3. On the Treatment of Optimization Problems With L1 Penalty Terms via Multiobjective Continuation. Bieker K; Gebken B; Peitz S IEEE Trans Pattern Anal Mach Intell; 2022 Nov; 44(11):7797-7808. PubMed ID: 34559634 [TBL] [Abstract][Full Text] [Related]
4. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Brunton SL; Proctor JL; Kutz JN Proc Natl Acad Sci U S A; 2016 Apr; 113(15):3932-7. PubMed ID: 27035946 [TBL] [Abstract][Full Text] [Related]
5. Path Following in the Exact Penalty Method of Convex Programming. Zhou H; Lange K Comput Optim Appl; 2015 Jul; 61(3):609-634. PubMed ID: 26366044 [TBL] [Abstract][Full Text] [Related]
6. Sparse signals recovered by non-convex penalty in quasi-linear systems. Cui A; Li H; Wen M; Peng J J Inequal Appl; 2018; 2018(1):59. PubMed ID: 29576716 [TBL] [Abstract][Full Text] [Related]
7. Morphological component analysis under non-convex smoothing penalty framework for gearbox fault diagnosis. Zhang Z; Huang W; Wang J; Ding C; Shi J; Jiang X; Shen C; Zhu Z ISA Trans; 2023 Dec; 143():525-535. PubMed ID: 37679273 [TBL] [Abstract][Full Text] [Related]
8. Online sequential echo state network with sparse RLS algorithm for time series prediction. Yang C; Qiao J; Ahmad Z; Nie K; Wang L Neural Netw; 2019 Oct; 118():32-42. PubMed ID: 31228722 [TBL] [Abstract][Full Text] [Related]
9. Convex compressive beamforming with nonconvex sparse regularization. Yang Y; Du Z; Wang Y; Guo X; Yang L; Zhou J J Acoust Soc Am; 2021 Feb; 149(2):1125. PubMed ID: 33639805 [TBL] [Abstract][Full Text] [Related]
10. Direction of Arrival Estimation in Elliptical Models via Sparse Penalized Likelihood Approach. Chen C; Zhou J; Tang M Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31121894 [TBL] [Abstract][Full Text] [Related]
11. Confidence Intervals for Sparse Penalized Regression with Random Designs. Yu G; Yin L; Lu S; Liu Y J Am Stat Assoc; 2020; 115(530):794-809. PubMed ID: 33281249 [TBL] [Abstract][Full Text] [Related]
12. A robust sparse identification method for nonlinear dynamic systems affected by non-stationary noise. Hao Z; Yang C; Huang K Chaos; 2023 Aug; 33(8):. PubMed ID: 37549114 [TBL] [Abstract][Full Text] [Related]
13. Adaptive integral alternating minimization method for robust learning of nonlinear dynamical systems from highly corrupted data. Zhang T; Liu G; Wang L; Lu ZR Chaos; 2023 Dec; 33(12):. PubMed ID: 38079648 [TBL] [Abstract][Full Text] [Related]
14. A Path Algorithm for Constrained Estimation. Zhou H; Lange K J Comput Graph Stat; 2013; 22(2):261-283. PubMed ID: 24039382 [TBL] [Abstract][Full Text] [Related]
15. Sparse model selection via integral terms. Schaeffer H; McCalla SG Phys Rev E; 2017 Aug; 96(2-1):023302. PubMed ID: 28950639 [TBL] [Abstract][Full Text] [Related]
16. Efficient parameter inference in networked dynamical systems via steady states: A surrogate objective function approach integrating mean-field and nonlinear least squares. Ding Y; Gao J; Magdon-Ismail M Phys Rev E; 2024 Mar; 109(3-1):034301. PubMed ID: 38632807 [TBL] [Abstract][Full Text] [Related]
17. Data-driven discovery of the governing equations of dynamical systems via moving horizon optimization. Lejarza F; Baldea M Sci Rep; 2022 Jul; 12(1):11836. PubMed ID: 35821394 [TBL] [Abstract][Full Text] [Related]
18. Improved dynamic MRI reconstruction by exploiting sparsity and rank-deficiency. Majumdar A Magn Reson Imaging; 2013 Jun; 31(5):789-95. PubMed ID: 23218793 [TBL] [Abstract][Full Text] [Related]
19. A few theoretical results for Laplace and arctan penalized ordinary least squares linear regression estimators. John M; Vettam S Commun Stat Theory Methods; 2024; 53(13):4819-4840. PubMed ID: 38895616 [TBL] [Abstract][Full Text] [Related]
20. Nonlinear sparse partial least squares: an investigation of the effect of nonlinearity and sparsity on the decoding of intracranial data. Fatemi M; Daliri MR J Neural Eng; 2020 Feb; 17(1):016055. PubMed ID: 31783374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]