These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 35232037)
41. An improved sparse identification of nonlinear dynamics with Akaike information criterion and group sparsity. Dong X; Bai YL; Lu Y; Fan M Nonlinear Dyn; 2023; 111(2):1485-1510. PubMed ID: 36246669 [TBL] [Abstract][Full Text] [Related]
42. Inference in dynamic systems using B-splines and quasilinearized ODE penalties. Frasso G; Jaeger J; Lambert P Biom J; 2016 May; 58(3):691-714. PubMed ID: 26602190 [TBL] [Abstract][Full Text] [Related]
43. Sparse multiple kernel learning for signal processing applications. Subrahmanya N; Shin YC IEEE Trans Pattern Anal Mach Intell; 2010 May; 32(5):788-98. PubMed ID: 20299705 [TBL] [Abstract][Full Text] [Related]
44. Image interpolation via regularized local linear regression. Liu X; Zhao D; Xiong R; Ma S; Gao W; Sun H IEEE Trans Image Process; 2011 Dec; 20(12):3455-69. PubMed ID: 21571611 [TBL] [Abstract][Full Text] [Related]
45. Learning chaotic systems from noisy data via multi-step optimization and adaptive training. Zhang L; Tang S; He G Chaos; 2022 Dec; 32(12):123134. PubMed ID: 36587345 [TBL] [Abstract][Full Text] [Related]
46. Sparse Identification and Estimation of Large-Scale Vector AutoRegressive Moving Averages. Wilms I; Basu S; Bien J; Matteson DS J Am Stat Assoc; 2023; 118(541):571-582. PubMed ID: 37346226 [TBL] [Abstract][Full Text] [Related]
47. A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems. Kazemi M; Arefi MM ISA Trans; 2017 Mar; 67():382-388. PubMed ID: 27989529 [TBL] [Abstract][Full Text] [Related]
50. Regularized least absolute deviation-based sparse identification of dynamical systems. Jiang F; Du L; Yang F; Deng ZC Chaos; 2023 Jan; 33(1):013103. PubMed ID: 36725653 [TBL] [Abstract][Full Text] [Related]
51. Kernel-based learning framework for discovering the governing equations of stochastic jump-diffusion processes directly from data. Sun W; Feng J; Su J; Guo Q Phys Rev E; 2023 Sep; 108(3-2):035306. PubMed ID: 37849188 [TBL] [Abstract][Full Text] [Related]
52. A general framework of noise suppression in material decomposition for dual-energy CT. Petrongolo M; Dong X; Zhu L Med Phys; 2015 Aug; 42(8):4848-62. PubMed ID: 26233212 [TBL] [Abstract][Full Text] [Related]
53. Multiplicative Noise and Blur Removal by Framelet Decomposition and -Based L-Curve Method. Fan Wang ; Xi-Le Zhao ; Ng MK IEEE Trans Image Process; 2016 Sep; 25(9):4222-4232. PubMed ID: 27337718 [TBL] [Abstract][Full Text] [Related]
54. Estimation of Genomic Breed Composition for Purebred and Crossbred Animals Using Sparsely Regularized Admixture Models. Wang Y; Wu XL; Li Z; Bao Z; Tait RG; Bauck S; Rosa GJM Front Genet; 2020; 11():576. PubMed ID: 32595700 [TBL] [Abstract][Full Text] [Related]
55. Deriving adaptive MRF coefficients from previous normal-dose CT scan for low-dose image reconstruction via penalized weighted least-squares minimization. Zhang H; Han H; Wang J; Ma J; Liu Y; Moore W; Liang Z Med Phys; 2014 Apr; 41(4):041916. PubMed ID: 24694147 [TBL] [Abstract][Full Text] [Related]
56. Model selection for hybrid dynamical systems via sparse regression. Mangan NM; Askham T; Brunton SL; Kutz JN; Proctor JL Proc Math Phys Eng Sci; 2019 Mar; 475(2223):20180534. PubMed ID: 31007544 [TBL] [Abstract][Full Text] [Related]
57. Sparse identification of Lagrangian for nonlinear dynamical systems via proximal gradient method. Purnomo A; Hayashibe M Sci Rep; 2023 May; 13(1):7919. PubMed ID: 37193704 [TBL] [Abstract][Full Text] [Related]
58. Penalized Nonlinear Least Squares Estimation of Time-Varying Parameters in Ordinary Differential Equations. Cao J; Huang JZ; Wu H J Comput Graph Stat; 2012; 21(1):42-56. PubMed ID: 23155351 [TBL] [Abstract][Full Text] [Related]
59. Low-dose CT reconstruction via L1 dictionary learning regularization using iteratively reweighted least-squares. Zhang C; Zhang T; Li M; Peng C; Liu Z; Zheng J Biomed Eng Online; 2016 Jun; 15(1):66. PubMed ID: 27316680 [TBL] [Abstract][Full Text] [Related]
60. Optimisation on the least squares identification of dynamical systems with application to hemodynamic modelling. Pan Y; Zheng Y; Harris S; Coca D; Johnston D; Mayhew J; Billings S Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3251-4. PubMed ID: 19964291 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]