These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35232068)

  • 1. Deep neural architectures for dialect classification with single frequency filtering and zero-time windowing feature representations.
    Kethireddy R; Kadiri SR; Gangashetty SV
    J Acoust Soc Am; 2022 Feb; 151(2):1077. PubMed ID: 35232068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mel-frequency cepstral coefficients derived using the zero-time windowing spectrum for classification of phonation types in singing.
    Kadiri SR; Alku P
    J Acoust Soc Am; 2019 Nov; 146(5):EL418. PubMed ID: 31795672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comparative Study of Features for Acoustic Cough Detection Using Deep Architectures
    Miranda IDS; Diacon AH; Niesler TR
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2601-2605. PubMed ID: 31946429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Empirical Mode Decomposition-Based Feature Extraction for Environmental Sound Classification.
    Ahmed A; Serrestou Y; Raoof K; Diouris JF
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-resolution speech analysis for automatic speech recognition using deep neural networks: Experiments on TIMIT.
    Toledano DT; Fernández-Gallego MP; Lozano-Diez A
    PLoS One; 2018; 13(10):e0205355. PubMed ID: 30304055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Group delay spectrogram of speech signals without phase wrapping.
    Yegnanarayana B
    J Acoust Soc Am; 2022 Mar; 151(3):2181. PubMed ID: 35364933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phonocardiogram transfer learning-based CatBoost model for diastolic dysfunction identification using multiple domain-specific deep feature fusion.
    Zheng Y; Guo X; Yang Y; Wang H; Liao K; Qin J
    Comput Biol Med; 2023 Apr; 156():106707. PubMed ID: 36871337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Analysis of Audio Processing Techniques on Doppler Radar Signature of Human Walking Motion Using CNN Models.
    Ha MK; Phan TL; Nguyen DHH; Quan NH; Ha-Phan NQ; Ching CTS; Hieu NV
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heart sound classification based on equal scale frequency cepstral coefficients and deep learning.
    Chen X; Li H; Huang Y; Han W; Yu X; Zhang P; Tao R
    Biomed Tech (Berl); 2023 Jun; 68(3):285-295. PubMed ID: 36780471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convolutional Neural Networks for the Identification of African Lions from Individual Vocalizations.
    Trapanotto M; Nanni L; Brahnam S; Guo X
    J Imaging; 2022 Apr; 8(4):. PubMed ID: 35448223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lung sound classification using cepstral-based statistical features.
    Sengupta N; Sahidullah M; Saha G
    Comput Biol Med; 2016 Aug; 75():118-29. PubMed ID: 27286184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of Emotion of Speech for RAVDESS Audio Using Hybrid Convolution Neural Network.
    Puri T; Soni M; Dhiman G; Ibrahim Khalaf O; Alazzam M; Raza Khan I
    J Healthc Eng; 2022; 2022():8472947. PubMed ID: 35265307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic Assessment of Aphasic Speech Sensed by Audio Sensors for Classification into Aphasia Severity Levels to Recommend Speech Therapies.
    Herath HMDPM; Weraniyagoda WASA; Rajapaksha RTM; Wijesekara PADSN; Sudheera KLK; Chong PHJ
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presentation Attack Detection on Limited-Resource Devices Using Deep Neural Classifiers Trained on Consistent Spectrogram Fragments.
    Kubicki K; Kapusta P; Ślot K
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of respiratory sounds classification methods based on cepstral analysis and artificial neural networks.
    Semmad A; Bahoura M
    Comput Biol Med; 2024 Mar; 171():108190. PubMed ID: 38387384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning Methods for Underwater Target Feature Extraction and Recognition.
    Hu G; Wang K; Peng Y; Qiu M; Shi J; Liu L
    Comput Intell Neurosci; 2018; 2018():1214301. PubMed ID: 29780407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voice Disorder Classification Based on Multitaper Mel Frequency Cepstral Coefficients Features.
    Eskidere Ö; Gürhanlı A
    Comput Math Methods Med; 2015; 2015():956249. PubMed ID: 26681977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Underwater single-channel acoustic signal multitarget recognition using convolutional neural networks.
    Sun Q; Wang K
    J Acoust Soc Am; 2022 Mar; 151(3):2245. PubMed ID: 35364907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CNN-Based Heart Sound Classification with an Imbalance-Compensating Weighted Loss Function.
    Li Z; Chang Y; Schuller BW
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4934-4937. PubMed ID: 36085939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CovidCoughNet: A new method based on convolutional neural networks and deep feature extraction using pitch-shifting data augmentation for covid-19 detection from cough, breath, and voice signals.
    Celik G
    Comput Biol Med; 2023 Sep; 163():107153. PubMed ID: 37321101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.