These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35232088)

  • 21. Effects of interaural decoherence on sensitivity to interaural level differences across frequency.
    Brown AD; Tollin DJ
    J Acoust Soc Am; 2021 Jun; 149(6):4630. PubMed ID: 34241434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrophysiological responses to lateral shifts are not consistent with opponent-channel processing of interaural level differences.
    Ozmeral EJ; Eddins DA; Eddins AC
    J Neurophysiol; 2019 Aug; 122(2):737-748. PubMed ID: 31242052
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Slow Temporal Integration Enables Robust Neural Coding and Perception of a Cue to Sound Source Location.
    Brown AD; Tollin DJ
    J Neurosci; 2016 Sep; 36(38):9908-21. PubMed ID: 27656028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reweighting of Binaural Localization Cues in Bilateral Cochlear-Implant Listeners.
    Klingel M; Laback B
    J Assoc Res Otolaryngol; 2022 Feb; 23(1):119-136. PubMed ID: 34812980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Binaural hearing in children using Gaussian enveloped and transposed tones.
    Ehlers E; Kan A; Winn MB; Stoelb C; Litovsky RY
    J Acoust Soc Am; 2016 Apr; 139(4):1724. PubMed ID: 27106319
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils.
    Vollmer M
    J Neurosci; 2018 Aug; 38(31):6949-6966. PubMed ID: 29959238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-frequency neurons in the inferior colliculus that are sensitive to interaural delays of amplitude-modulated tones: evidence for dual binaural influences.
    Batra R; Kuwada S; Stanford TR
    J Neurophysiol; 1993 Jul; 70(1):64-80. PubMed ID: 8395589
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neuronal sensitivity to interaural time differences in the sound envelope in the auditory cortex of the pallid bat.
    Lohuis TD; Fuzessery ZM
    Hear Res; 2000 May; 143(1-2):43-57. PubMed ID: 10771183
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of reverberation on the directional sensitivity of auditory neurons across the tonotopic axis: influences of interaural time and level differences.
    Devore S; Delgutte B
    J Neurosci; 2010 Jun; 30(23):7826-37. PubMed ID: 20534831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discrimination thresholds for interaural-time differences and interaural-level differences in naïve listeners: Sex differences and learning.
    Wright BA; Dai H
    Hear Res; 2022 Oct; 424():108599. PubMed ID: 36063641
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Binaural interference with simulated electric acoustic stimulation.
    van Ginkel C; Gifford RH; Stecker GC
    J Acoust Soc Am; 2019 Apr; 145(4):2445. PubMed ID: 31046315
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimating the perceptual weighting of interaural time difference cues in amplitude modulated binaural beats.
    Haywood NR; McAlpine D
    J Acoust Soc Am; 2020 Aug; 148(2):EL185. PubMed ID: 32872987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of experimentally induced conductive hearing loss on spectral and temporal aspects of sound transmission through the ear.
    Eric Lupo J; Koka K; Thornton JL; Tollin DJ
    Hear Res; 2011 Feb; 272(1-2):30-41. PubMed ID: 21073935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Localization of sound in rooms. V. Binaural coherence and human sensitivity to interaural time differences in noise.
    Rakerd B; Hartmann WM
    J Acoust Soc Am; 2010 Nov; 128(5):3052-63. PubMed ID: 21110600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Similar patterns of learning and performance variability for human discrimination of interaural time differences at high and low frequencies.
    Zhang Y; Wright BA
    J Acoust Soc Am; 2007 Apr; 121(4):2207-16. PubMed ID: 17471734
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Time-Varying Distortions of Binaural Information by Bilateral Hearing Aids: Effects of Nonlinear Frequency Compression.
    Brown AD; Rodriguez FA; Portnuff CD; Goupell MJ; Tollin DJ
    Trends Hear; 2016 Oct; 20():. PubMed ID: 27698258
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Off-frequency BMLD: the role of monaural processing.
    van de Par S; Luebken B; Verhey JL; Kohlrausch A
    Adv Exp Med Biol; 2013; 787():293-301. PubMed ID: 23716235
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonuniform temporal weighting of interaural time differences in 500 Hz tones.
    Stecker GC; Bibee JM
    J Acoust Soc Am; 2014 Jun; 135(6):3541-7. PubMed ID: 24907817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discrimination of interaural temporal disparities conveyed by high-frequency sinusoidally amplitude-modulated tones and high-frequency transposed tones: effects of spectrally flanking noises.
    Bernstein LR; Trahiotis C
    J Acoust Soc Am; 2008 Nov; 124(5):3088-94. PubMed ID: 19045794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sound pressure transformations by the head and pinnae of the adult Chinchilla (Chinchilla lanigera).
    Koka K; Jones HG; Thornton JL; Lupo JE; Tollin DJ
    Hear Res; 2011 Feb; 272(1-2):135-47. PubMed ID: 20971180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.