These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35232089)

  • 1. Analysis of the linear oscillation dynamics of Fluidyne engines.
    Ito M; Murti P; Tsuboi S; Shoji E; Biwa T
    J Acoust Soc Am; 2022 Feb; 151(2):1133. PubMed ID: 35232089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoacoustic modeling of Fluidyne engine with a gas-coupled water pumping line.
    Biwa T; Prastowo M; Shoji E
    J Acoust Soc Am; 2022 Oct; 152(4):2212. PubMed ID: 36319227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental study on liquid piston Stirling engine combined with self-rectifying turbine.
    Tomihira J; Shoji E; Biwa T; Murti P; Okuhara S; Takao M
    J Acoust Soc Am; 2024 Aug; 156(2):792-799. PubMed ID: 39109832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine.
    Ling H; Luo E; Dai W
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1511-4. PubMed ID: 16996099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Open cycle traveling wave thermoacoustics: mean temperature difference at the regenerator interface.
    Weiland NT; Zinn BT
    J Acoust Soc Am; 2003 Nov; 114(5):2791-8. PubMed ID: 14650014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and validation of a software application to analyze thermal and kinematic multimodels of Stirling engines.
    Auñón JA; Pérez JM; Martín MJ; Auñón F; Nuñez D
    Heliyon; 2023 Sep; 9(9):e18487. PubMed ID: 37662715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of a thermoacoustic-Stirling engine connected to a piston-crank-flywheel assembly.
    Penelet G; Watanabe T; Biwa T
    J Acoust Soc Am; 2021 Mar; 149(3):1674. PubMed ID: 33765805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient spray combustion characteristics in a gas-liquid pintle rocket engine under acoustic excitation.
    Jin X; Zhu C; Chen D; Zhang Z
    Sci Rep; 2024 Jun; 14(1):13135. PubMed ID: 38849526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of thermoacoustic shock waves in a resonance tube.
    Biwa T; Sobata K; Otake S; Yazaki T
    J Acoust Soc Am; 2014 Sep; 136(3):965. PubMed ID: 25190371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A thermoacoustic-Stirling heat engine: detailed study.
    Backhaus S; Swift GW
    J Acoust Soc Am; 2000 Jun; 107(6):3148-66. PubMed ID: 10875360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Difference in electrodynamic transduction between speaker and alternator in thermoacoustic applications.
    Gonen E; Grossman G
    J Acoust Soc Am; 2015 Sep; 138(3):1537-48. PubMed ID: 26428791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental investigation of a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine.
    Luo EC; Dai W; Zhang Y; Ling H
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1531-3. PubMed ID: 16979679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fishbone-like instability in a looped-tube thermoacoustic engine.
    Yu Z; Jaworski AJ; Abduljalil AS
    J Acoust Soc Am; 2010 Oct; 128(4):EL188-94. PubMed ID: 20968324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability analysis of thermally induced spontaneous gas oscillations in straight and looped tubes.
    Ueda Y; Kato C
    J Acoust Soc Am; 2008 Aug; 124(2):851-8. PubMed ID: 18681577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of acoustic field modulation in the regenerator by double loudspeakers method.
    Zhou L; Xie X; Li Q
    J Acoust Soc Am; 2011 Nov; 130(5):2709-19. PubMed ID: 22087899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beta Type Stirling Engine. Schmidt and Finite Physical Dimensions Thermodynamics Methods Faced to Experiments.
    Dobre C; Grosu L; Costea M; Constantin M
    Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasilinear irreversible thermodynamics of a low-temperature-differential kinematic Stirling heat engine.
    Izumida Y
    Phys Rev E; 2020 Jul; 102(1-1):012142. PubMed ID: 32795077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized Piston Motion for an Alpha-Type Stirling Engine.
    Masser R; Khodja A; Scheunert M; Schwalbe K; Fischer A; Paul R; Hoffmann KH
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurements of acoustic particle velocity in a coaxial duct and its application to a traveling-wave thermoacoustic heat engine.
    Morii J; Biwa T; Yazaki T
    Rev Sci Instrum; 2014 Sep; 85(9):094902. PubMed ID: 25273759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low temperature difference thermoacoustic prime mover with asymmetric multi-stage loop configuration.
    Jin T; Yang R; Wang Y; Feng Y; Tang K
    Sci Rep; 2017 Aug; 7(1):7665. PubMed ID: 28794455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.