BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 3523209)

  • 1. Studies on the biological activity of an insulin-stimulating peptide from a tryptic digest of bovine serum albumin.
    Ueno A; Arakaki N; Oribe T; Takeda Y
    Mol Cell Biochem; 1986 May; 70(2):121-30. PubMed ID: 3523209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The potentiations by insulin-stimulating peptide from bovine serum albumin of the effects of insulin mimickers and insulin in stimulating glucose utilization by rat adipocytes.
    Ueno A; Arakaki N; Nishikawa S; Takeda Y
    J Biochem; 1987 Nov; 102(5):1003-12. PubMed ID: 3325505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insulin-stimulating peptide from a tryptic digest of bovine serum albumin: purification and characterization.
    Ueno A; Hong YM; Arakaki N; Takeda Y
    J Biochem; 1985 Aug; 98(2):269-78. PubMed ID: 4066641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insulin-stimulating peptide from tryptic digest of bovine serum albumin.
    Ueno A; Arakaki N; Inoue H; Oribe T; Takeda Y
    Biochem Biophys Res Commun; 1984 Aug; 122(3):1179-85. PubMed ID: 6383374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of tyrosine autophosphorylation of the solubilized insulin receptor by an insulin-stimulating peptide derived from bovine serum albumin.
    Ueno A; Arakaki N; Takeda Y; Fujio H
    Biochem Biophys Res Commun; 1987 Apr; 144(1):11-8. PubMed ID: 3555483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular basis of insulin insensitivity in large rat adipocytes.
    Czech MP
    J Clin Invest; 1976 Jun; 57(6):1523-32. PubMed ID: 932192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of insulin fragments on biological activity of insulin and desoctapeptide insulin. I. Potentiation of biological activities.
    Kikuchi K; Larner J; Freer RJ; Day AR
    J Biol Chem; 1981 Sep; 256(18):9441-4. PubMed ID: 7026553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of glucagon-like peptide-1 and exendins on kinase activity, glucose transport and lipid metabolism in adipocytes from normal and type-2 diabetic rats.
    Sancho V; Trigo MV; González N; Valverde I; Malaisse WJ; Villanueva-Peñacarrillo ML
    J Mol Endocrinol; 2005 Aug; 35(1):27-38. PubMed ID: 16087719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of insulin sensitivity by adenosine. Effects on glucose transport, lipid synthesis, and insulin receptors of the adipocyte.
    Joost HG; Steinfelder HJ
    Mol Pharmacol; 1982 Nov; 22(3):614-8. PubMed ID: 6759915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vasoactive intestinal peptide inhibits insulin-stimulated glucose transport in rat adipocytes.
    Green A; Alvarez IM; Misbin RI
    Am J Physiol; 1985 Dec; 249(6 Pt 1):E608-13. PubMed ID: 3002179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of isolated bovine adipocytes: validation of use for studies characterizing insulin sensitivity and binding.
    Vasilatos R; Etherton TD; Wangsness PJ
    Endocrinology; 1983 May; 112(5):1667-73. PubMed ID: 6299704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GLP-1 (7-36) amide: effects on glucose transport and metabolism in rat adipose tissue.
    Perea A; Viñambres C; Clemente F; Villanueva-Peñacarrillo ML; Valverde I
    Horm Metab Res; 1997 Sep; 29(9):417-21. PubMed ID: 9370107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the entero-pancreatic hormones, gastric inhibitory polypeptide and glucagon-like polypeptide-1(7-36) amide, on fatty acid synthesis in explants of rat adipose tissue.
    Oben J; Morgan L; Fletcher J; Marks V
    J Endocrinol; 1991 Aug; 130(2):267-72. PubMed ID: 1919397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of cytochalasin B and D on groups of insulin receptors and on insulin action in rat adipocytes. Possible evidence for a structural relationship of the insulin receptor to the glucose transport system.
    Jarett L; Smith RM
    J Clin Invest; 1979 Apr; 63(4):571-9. PubMed ID: 438322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The insulin-like action of beta-cell-tropin on glucose and lipid metabolism in adipocytes.
    Watkinson A; Beloff-Chain A
    Horm Metab Res; 1984 Dec; 16 Suppl 1():55-8. PubMed ID: 6099818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of insulin on glucose transport and metabolism in isolated fat-cells of gonadal adipose tissue from mature age-matched male and female rats.
    Guerre-Millo M; Leturque A; Lavau M; Girard J
    Biochem J; 1985 Jan; 225(2):343-8. PubMed ID: 3883989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased insulin sensitivity and responsiveness of glucose metabolism in adipocytes from female versus male rats.
    Guerre-Millo M; Leturque A; Girard J; Lavau M
    J Clin Invest; 1985 Jul; 76(1):109-16. PubMed ID: 3894416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insulin-stimulating protein from human plasma. Chemical characteristics and biological activity.
    Arakaki N; Ueno A; Oribe T; Takeda Y; Takao T; Shimonishi Y; Hara S
    Eur J Biochem; 1986 Dec; 161(2):491-504. PubMed ID: 3536516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes.
    Wu X; Motoshima H; Mahadev K; Stalker TJ; Scalia R; Goldstein BJ
    Diabetes; 2003 Jun; 52(6):1355-63. PubMed ID: 12765944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of decreased insulin responsiveness of large adipocytes.
    Olefsky JM
    Endocrinology; 1977 Apr; 100(4):1169-77. PubMed ID: 837879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.