These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35232096)

  • 1. Perfect low-frequency sound absorption of rough neck embedded Helmholtz resonators.
    Zhang L; Xin F
    J Acoust Soc Am; 2022 Feb; 151(2):1191. PubMed ID: 35232096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrathin acoustic metamaterial as super absorber for broadband low-frequency underwater sound.
    Zhou X; Wang X; Xin F
    Sci Rep; 2023 May; 13(1):7983. PubMed ID: 37198226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Aperture Shape on Absorption Property of Acoustic Metamaterial of Parallel-Connection Helmholtz Resonator.
    Bi S; Yang F; Tang S; Shen X; Zhang X; Zhu J; Yang X; Peng W; Yuan F
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid fractal acoustic metamaterials for low-frequency sound absorber based on cross mixed micro-perforated panel mounted over the fractals structure cavity.
    Singh SK; Prakash O; Bhattacharya S
    Sci Rep; 2022 Nov; 12(1):20444. PubMed ID: 36443324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic Metamaterials for Low-Frequency Noise Reduction Based on Parallel Connection of Multiple Spiral Chambers.
    Duan H; Yang F; Shen X; Yin Q; Wang E; Zhang X; Yang X; Shen C; Peng W
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Adjustable Parallel Helmholtz Acoustic Metamaterial for Broad Low-Frequency Sound Absorption Band.
    Yang X; Yang F; Shen X; Wang E; Zhang X; Shen C; Peng W
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal Design of Acoustic Metamaterial of Multiple Parallel Hexagonal Helmholtz Resonators by Combination of Finite Element Simulation and Cuckoo Search Algorithm.
    Yang F; Wang E; Shen X; Zhang X; Yin Q; Wang X; Yang X; Shen C; Peng W
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and Optimization of Broadband Acoustic Metamaterial Absorber Based on Parallel-Connection Square Helmholtz Resonators.
    Wang E; Yang F; Shen X; Duan H; Zhang X; Yin Q; Peng W; Yang X; Yang L
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active Acoustic Metamaterial Based on Helmholtz Resonators to Absorb Broadband Low-Frequency Noise.
    Hedayati R; Lakshmanan SP
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of slow sound to design perfect and broadband passive sound absorbing materials.
    Groby JP; Pommier R; Aurégan Y
    J Acoust Soc Am; 2016 Apr; 139(4):1660. PubMed ID: 27106313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic perfect absorbers via Helmholtz resonators with embedded apertures.
    Huang S; Fang X; Wang X; Assouar B; Cheng Q; Li Y
    J Acoust Soc Am; 2019 Jan; 145(1):254. PubMed ID: 30710935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harnessing cavity dissipation for enhanced sound absorption in Helmholtz resonance metamaterials.
    Li X; Yu X; Chua JW; Zhai W
    Mater Horiz; 2023 Jul; 10(8):2892-2903. PubMed ID: 37183606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-perfect sound absorption using hybrid resonance between subwavelength Helmholtz resonators with non-uniformly partitioned cavities.
    Choi E; Jeon W
    Sci Rep; 2024 Feb; 14(1):3174. PubMed ID: 38326525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of broadband Helmholtz resonator arrays using the radiation impedance method.
    Rajendran V; Piacsek A; Méndez Echenagucia T
    J Acoust Soc Am; 2022 Jan; 151(1):457. PubMed ID: 35105046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical requirements and inverse design for broadband perfect absorption of low-frequency waterborne sound by ultrathin metasurface.
    Zhong J; Zhao H; Yang H; Wang Y; Yin J; Wen J
    Sci Rep; 2019 Feb; 9(1):1181. PubMed ID: 30718565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems.
    Jiménez N; Romero-García V; Pagneux V; Groby JP
    Sci Rep; 2017 Oct; 7(1):13595. PubMed ID: 29051627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Frequency Sound-Insulation Performance of Labyrinth-Type Helmholtz and Thin-Film Compound Acoustic Metamaterial.
    Hu P; Zhao J; Liu H; Zhang X; Zhang G; Yao H
    Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable Helmholtz Resonators Using Multiple Necks.
    Papadakis NM; Stavroulakis GE
    Micromachines (Basel); 2023 Oct; 14(10):. PubMed ID: 37893369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-depth investigations into symmetrical labyrinthine acoustic metamaterial with two micro-slit entries for low-frequency sound absorption.
    Pavan G; Singh S
    J Acoust Soc Am; 2024 Jan; 155(1):496-510. PubMed ID: 38251978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphite-oxide hybrid multi-degree of freedom resonator metamaterial for broadband sound absorption.
    Bucciarelli F; Malfense Fierro GP; Rapisarda M; Meo M
    Sci Rep; 2022 Aug; 12(1):14611. PubMed ID: 36028529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.