These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35232119)

  • 1. Erratum: Double-pass consistency for amplitude- and frequency-modulation detection in normal-hearing listeners [J. Acoust. Soc. Am. 150, 3631-3647 (2021)].
    Attia S; King A; Varnet L; Ponsot E; Lorenzi C
    J Acoust Soc Am; 2022 Feb; 151(2):1180. PubMed ID: 35232119
    [No Abstract]   [Full Text] [Related]  

  • 2. Sensorineural hearing loss enhances auditory sensitivity and temporal integration for amplitude modulation.
    Wallaert N; Moore BC; Ewert SD; Lorenzi C
    J Acoust Soc Am; 2017 Feb; 141(2):971. PubMed ID: 28253641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensorineural hearing loss impairs sensitivity but spares temporal integration for detection of frequency modulation.
    Wallaert N; Varnet L; Moore BCJ; Lorenzi C
    J Acoust Soc Am; 2018 Aug; 144(2):720. PubMed ID: 30180712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of frequency modulation by hearing-impaired listeners: effects of carrier frequency, modulation rate, and added amplitude modulation.
    Moore BC; Skrodzka E
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):327-35. PubMed ID: 11833538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erratum: Effects of age and hearing mechanism on spectral resolution in normal hearing and cochlear-implanted listeners [J. Acoust. Soc. Am. 141(1), 613-623 (2017)].
    Horn DL; Dudley DJ; Dedhia K; Nie K; Drennan WR; Won JH; Rubinstein JT; Werner LA
    J Acoust Soc Am; 2017 May; 141(5):2977. PubMed ID: 28599570
    [No Abstract]   [Full Text] [Related]  

  • 6. Double-pass consistency for amplitude- and frequency-modulation detection in normal-hearing listeners.
    Attia S; King A; Varnet L; Ponsot E; Lorenzi C
    J Acoust Soc Am; 2021 Nov; 150(5):3631. PubMed ID: 34852611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intensity discrimination and detection of amplitude modulation in electric hearing.
    Donaldson GS; Viemeister NF
    J Acoust Soc Am; 2000 Aug; 108(2):760-3. PubMed ID: 10955643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erratum: A crew of listeners with no more than "slight" hearing loss who exhibit binaural deficits also exhibit reduced amounts of binaural interference [J. Acoust. Soc. Am. 150, 2977-2984 (2021)].
    Bernstein LR; Trahiotis C
    J Acoust Soc Am; 2022 Jan; 151(1):95. PubMed ID: 35105005
    [No Abstract]   [Full Text] [Related]  

  • 9. Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration.
    Dau T; Kollmeier B; Kohlrausch A
    J Acoust Soc Am; 1997 Nov; 102(5 Pt 1):2906-19. PubMed ID: 9373977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of relative and overall amplitude on perception of voiceless stop consonants by listeners with normal and impaired hearing.
    Hedrick MS; Schulte L; Jesteadt W
    J Acoust Soc Am; 1995 Sep; 98(3):1292-303. PubMed ID: 7560503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The intensitive DL of tones: dependence of signal/masker ratio on tone level and on spectrum of added noise.
    Greenwood DD
    Hear Res; 1993 Feb; 65(1-2):1-39. PubMed ID: 8458743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macaque thresholds for detecting increases in intensity: effects of formant structure.
    Le Prell CG; Niemiec AJ; Moody DB
    Hear Res; 2001 Dec; 162(1-2):29-42. PubMed ID: 11707349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erratum: Relative sound localisation abilities in human listeners [J. Acoust. Soc. Am. 138, 674-686 (2015)].
    Wood KC; Bizley JK
    J Acoust Soc Am; 2016 Jun; 139(6):3043. PubMed ID: 27369125
    [No Abstract]   [Full Text] [Related]  

  • 14. Spectral weighting strategies for sentences measured by a correlational method.
    Calandruccio L; Doherty KA
    J Acoust Soc Am; 2007 Jun; 121(6):3827-36. PubMed ID: 17552730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between amplitude modulation and frequency modulation processing: Effects of age and hearing loss.
    Paraouty N; Ewert SD; Wallaert N; Lorenzi C
    J Acoust Soc Am; 2016 Jul; 140(1):121. PubMed ID: 27475138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Algorithms for separating the speech of interfering talkers: evaluations with voiced sentences, and normal-hearing and hearing-impaired listeners.
    Stubbs RJ; Summerfield Q
    J Acoust Soc Am; 1990 Jan; 87(1):359-72. PubMed ID: 2299046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Further evidence against an across-frequency mechanism specific to the detection of frequency modulation (FM) incoherence between resolved frequency components.
    Carlyon RP
    J Acoust Soc Am; 1994 Feb; 95(2):949-61. PubMed ID: 8132909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Erratum: Modeling sound-source localization in sagittal planes for human listeners [J. Acoust. Soc. Am. 136, 791-802 (2014)].
    Baumgartner R; Majdak P; Laback B
    J Acoust Soc Am; 2016 Oct; 140(4):2456. PubMed ID: 27794316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the role of spectral and envelope characteristics in the intelligibility advantage of clear speech.
    Krause JC; Braida LD
    J Acoust Soc Am; 2009 May; 125(5):3346-57. PubMed ID: 19425675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perception of amplitude modulation by hearing-impaired listeners: the audibility of component modulation and detection of phase change in three-component modulators.
    Sek A; Moore BC
    J Acoust Soc Am; 2006 Jan; 119(1):507-14. PubMed ID: 16454304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.