These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35232189)

  • 1. Tension between predicting accurate ground state correlation energies and excitation energies from adiabatic approximations in TDDFT.
    Everhart LM; Derteano JA; Bates JE
    J Chem Phys; 2022 Feb; 156(8):084116. PubMed ID: 35232189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large Molecules.
    Nguyen BD; Chen GP; Agee MM; Burow AM; Tang MP; Furche F
    J Chem Theory Comput; 2020 Apr; 16(4):2258-2273. PubMed ID: 32105488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectric Matrix Formulation of Correlation Energies in the Random Phase Approximation: Inclusion of Exchange Effects.
    Mussard B; Rocca D; Jansen G; Ángyán JG
    J Chem Theory Comput; 2016 May; 12(5):2191-202. PubMed ID: 26986444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron affinities and ionisation potentials for atoms via "benchmark" tdDFT calculations with and without exchange kernels.
    Gould T; Dobson JF
    J Chem Phys; 2013 Jan; 138(1):014109. PubMed ID: 23298030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Valence excitation energies of alkenes, carbonyl compounds, and azabenzenes by time-dependent density functional theory: linear response of the ground state compared to collinear and noncollinear spin-flip TDDFT with the Tamm-Dancoff approximation.
    Isegawa M; Truhlar DG
    J Chem Phys; 2013 Apr; 138(13):134111. PubMed ID: 23574212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scrutinizing GW-Based Methods Using the Hubbard Dimer.
    Di Sabatino S; Loos PF; Romaniello P
    Front Chem; 2021; 9():751054. PubMed ID: 34778206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What Is the Accuracy Limit of Adiabatic Linear-Response TDDFT Using Exact Exchange-Correlation Potentials and Approximate Kernels?
    Kaur J; Ospadov E; Staroverov VN
    J Chem Theory Comput; 2019 Sep; 15(9):4956-4964. PubMed ID: 31386366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Derivation of the RPA (Random Phase Approximation) Equation of ATDDFT (Adiabatic Time Dependent Density Functional Ground State Response Theory) from an Excited State Variational Approach Based on the Ground State Functional.
    Ziegler T; Krykunov M; Autschbach J
    J Chem Theory Comput; 2014 Sep; 10(9):3980-6. PubMed ID: 26588541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of model exchange-correlation kernels in the adiabatic connection fluctuation-dissipation theorem for inhomogeneous systems.
    Lu D
    J Chem Phys; 2014 May; 140(18):18A520. PubMed ID: 24832328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strengths and limitations of the adiabatic exact-exchange kernel for total energy calculations.
    Hellgren M; Baguet L
    J Chem Phys; 2023 May; 158(18):. PubMed ID: 37158324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced correlation functionals: application to bulk materials and localized systems.
    García-González P; Fernández JJ; Marini A; Rubio A
    J Phys Chem A; 2007 Dec; 111(49):12458-65. PubMed ID: 17929905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitation energies along a range-separated adiabatic connection.
    Rebolini E; Toulouse J; Teale AM; Helgaker T; Savin A
    J Chem Phys; 2014 Jul; 141(4):044123. PubMed ID: 25084897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Excitation Energies from Time-Dependent Density Functional Theory Employing Random-Phase Approximation Hessians with Exact Exchange.
    Heßelmann A
    J Chem Theory Comput; 2015 Apr; 11(4):1607-20. PubMed ID: 26574370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interatomic methods for the dispersion energy derived from the adiabatic connection fluctuation-dissipation theorem.
    Tkatchenko A; Ambrosetti A; DiStasio RA
    J Chem Phys; 2013 Feb; 138(7):074106. PubMed ID: 23444996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluctuation-dissipation theorem density-functional theory.
    Furche F; Van Voorhis T
    J Chem Phys; 2005 Apr; 122(16):164106. PubMed ID: 15945671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pros and Cons of the Bethe-Salpeter Formalism for Ground-State Energies.
    Loos PF; Scemama A; Duchemin I; Jacquemin D; Blase X
    J Phys Chem Lett; 2020 May; 11(9):3536-3545. PubMed ID: 32298578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitation energies from range-separated time-dependent density and density matrix functional theory.
    Pernal K
    J Chem Phys; 2012 May; 136(18):184105. PubMed ID: 22583275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the accuracy of ground-state correlation energies within a plane-wave basis set: The electron-hole exchange kernel.
    Dixit A; Ángyán JG; Rocca D
    J Chem Phys; 2016 Sep; 145(10):104105. PubMed ID: 27634249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-consistent Kohn-Sham method based on the adiabatic-connection fluctuation-dissipation theorem and the exact-exchange kernel.
    Bleiziffer P; Krug M; Görling A
    J Chem Phys; 2015 Jun; 142(24):244108. PubMed ID: 26133411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical First-Order Molecular Properties and Forces within the Adiabatic Connection Random Phase Approximation.
    Burow AM; Bates JE; Furche F; Eshuis H
    J Chem Theory Comput; 2014 Jan; 10(1):180-94. PubMed ID: 26579901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.