BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35232238)

  • 1. Emerging infectious disease triggered a trophic cascade and enhanced recruitment of a masting tree.
    Bogdziewicz M; Kuijper D; Zwolak R; Churski M; Jędrzejewska B; Wysocka-Fijorek E; Gazda A; Miścicki S; Podgórski T
    Proc Biol Sci; 2022 Mar; 289(1970):20212636. PubMed ID: 35232238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid aggregative and reproductive responses of weevils to masting of North American oaks counteract predator satiation.
    Bogdziewicz M; Marino S; Bonal R; Zwolak R; Steele MA
    Ecology; 2018 Nov; 99(11):2575-2582. PubMed ID: 30182480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effectiveness of predator satiation in masting oaks is negatively affected by conspecific density.
    Bogdziewicz M; Espelta JM; Muñoz A; Aparicio JM; Bonal R
    Oecologia; 2018 Apr; 186(4):983-993. PubMed ID: 29383506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acorn crop size and pre-dispersal predation determine inter-specific differences in the recruitment of co-occurring oaks.
    Espelta JM; Cortés P; Molowny-Horas R; Retana J
    Oecologia; 2009 Sep; 161(3):559-68. PubMed ID: 19544074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Masting mediated by summer drought reduces acorn predation in Mediterranean oak forests.
    Espelta JM; Cortés P; Molowny-Horas R; Sánchez-Humanes B; Retana J
    Ecology; 2008 Mar; 89(3):805-17. PubMed ID: 18459343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate change has cascading effects on tree masting and the breeding performance of a forest songbird in a primeval forest.
    Czeszczewik D; Czortek P; Jaroszewicz B; Zub K; Rowiński P; Walankiewicz W
    Sci Total Environ; 2020 Dec; 747():142084. PubMed ID: 33076212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Do wild boar movements drive the spread of African Swine Fever?
    Podgórski T; Śmietanka K
    Transbound Emerg Dis; 2018 Dec; 65(6):1588-1596. PubMed ID: 29799177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Masting promotes transformation from predation to mutualism in an oak-weevil-rodent system.
    Zhang H; Niu H; Steele MA; Peng L; He H; Li A; Yi X; Li H; Zhang Z
    Sci China Life Sci; 2024 Jul; 67(7):1514-1524. PubMed ID: 38558376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Interplay among Acorn Abundance and Rodent Behavior Drives the Spatial Pattern of Seedling Recruitment in Mature Mediterranean Oak Forests.
    Sunyer P; Boixadera E; Muñoz A; Bonal R; Espelta JM
    PLoS One; 2015; 10(6):e0129844. PubMed ID: 26070129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prescribed fire and partial overstory removal alter an acorn-rodent conditional mutualism.
    Greenler SM; Estrada LA; Kellner KF; Saunders MR; Swihart RK
    Ecol Appl; 2019 Oct; 29(7):e01958. PubMed ID: 31240798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wood warbler population dynamics in response to mast seeding regimes in Europe.
    Maag N; Korner-Nievergelt F; Szymkowiak J; Hałas N; Maziarz M; Neubauer G; Luepold SB; Carlotti S; Schaub M; Flade M; Scherrer D; Grendelmeier A; Riess M; Stelbrink P; Pasinelli G
    Ecology; 2024 Feb; 105(2):e4227. PubMed ID: 38038276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grazing hinders seed dispersal during crop failure in a declining oak woodland.
    Vaz PG; Bugalho MN; Fedriani JM
    Sci Total Environ; 2024 Jan; 907():167835. PubMed ID: 37839490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating the risk of environmental contamination by forest users in African Swine Fever endemic areas.
    Gervasi V; Marcon A; Guberti V
    Acta Vet Scand; 2022 Jul; 64(1):16. PubMed ID: 35897007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disease-Induced Mortality Outweighs Hunting in Causing Wild Boar Population Crash After African Swine Fever Outbreak.
    Morelle K; Bubnicki J; Churski M; Gryz J; Podgórski T; Kuijper DPJ
    Front Vet Sci; 2020; 7():378. PubMed ID: 32850993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. African Swine Fever Re-Emerging in Estonia: The Role of Seropositive Wild Boar from an Epidemiological Perspective.
    Schulz K; Schulz J; Staubach C; Blome S; Nurmoja I; Conraths FJ; Sauter-Louis C; Viltrop A
    Viruses; 2021 Oct; 13(11):. PubMed ID: 34834928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of an African swine fever outbreak on endemic tuberculosis in wild boar populations: A model analysis.
    O'Neill X; White A; Ruiz-Fons F; Gortázar C
    Transbound Emerg Dis; 2021 Sep; 68(5):2750-2760. PubMed ID: 33787002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial epidemiology of African swine fever: Host, landscape and anthropogenic drivers of disease occurrence in wild boar.
    Podgórski T; Borowik T; Łyjak M; Woźniakowski G
    Prev Vet Med; 2020 Apr; 177():104691. PubMed ID: 31122672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of habitat fragmentation and hunting activities on African swine fever dynamics among wild boar populations.
    Salazar LG; Rose N; Hayes B; Hammami P; Baubet E; Desvaux S; Andraud M
    Prev Vet Med; 2022 Nov; 208():105750. PubMed ID: 36054970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seed predation by mammals and forest dominance by Quercus oleoides, a tropical lowland oak.
    Boucher DH
    Oecologia; 1981 Jul; 49(3):409-414. PubMed ID: 28310006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting spread and effective control measures for African swine fever-Should we blame the boars?
    Taylor RA; Podgórski T; Simons RRL; Ip S; Gale P; Kelly LA; Snary EL
    Transbound Emerg Dis; 2021 Mar; 68(2):397-416. PubMed ID: 32564507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.