BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 35232250)

  • 21. Control of extracellular dopamine at dendrite and axon terminals.
    Ford CP; Gantz SC; Phillips PE; Williams JT
    J Neurosci; 2010 May; 30(20):6975-83. PubMed ID: 20484639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons.
    Dragicevic E; Poetschke C; Duda J; Schlaudraff F; Lammel S; Schiemann J; Fauler M; Hetzel A; Watanabe M; Lujan R; Malenka RC; Striessnig J; Liss B
    Brain; 2014 Aug; 137(Pt 8):2287-302. PubMed ID: 24934288
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential regulation of somatodendritic and nerve terminal dopamine release by serotonergic innervation of substantia nigra.
    Cobb WS; Abercrombie ED
    J Neurochem; 2003 Feb; 84(3):576-84. PubMed ID: 12558977
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RIM is essential for stimulated but not spontaneous somatodendritic dopamine release in the midbrain.
    Robinson BG; Cai X; Wang J; Bunzow JR; Williams JT; Kaeser PS
    Elife; 2019 Sep; 8():. PubMed ID: 31486769
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neurochemical characterization of the release and uptake of dopamine in ventral tegmental area and serotonin in substantia nigra of the mouse.
    John CE; Budygin EA; Mateo Y; Jones SR
    J Neurochem; 2006 Jan; 96(1):267-82. PubMed ID: 16300629
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Voltage-operated Ca2+ channels regulate dopamine release from somata of dopamine neurons in the substantia nigra pars compacta.
    Kim Y; Park MK; Chung S
    Biochem Biophys Res Commun; 2008 Sep; 373(4):665-9. PubMed ID: 18601902
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immunocytochemical identification of proteins involved in dopamine release from the somatodendritic compartment of nigral dopaminergic neurons.
    Witkovsky P; Patel JC; Lee CR; Rice ME
    Neuroscience; 2009 Dec; 164(2):488-96. PubMed ID: 19682556
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dichotomy of tyrosine hydroxylase and dopamine regulation between somatodendritic and terminal field areas of nigrostriatal and mesoaccumbens pathways.
    Salvatore MF; Pruett BS
    PLoS One; 2012; 7(1):e29867. PubMed ID: 22242182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heterogeneity of electrically evoked dopamine release and reuptake in substantia nigra, ventral tegmental area, and striatum.
    Cragg S; Rice ME; Greenfield SA
    J Neurophysiol; 1997 Feb; 77(2):863-73. PubMed ID: 9065855
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Motor activity-induced dopamine release in the substantia nigra is regulated by muscarinic receptors.
    Andersson DR; Björnsson E; Bergquist F; Nissbrandt H
    Exp Neurol; 2010 Jan; 221(1):251-9. PubMed ID: 19944096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relative involvement of globus pallidus and subthalamic nucleus in the regulation of somatodendritic dopamine release in substantia nigra is dopamine-dependent.
    Cobb WS; Abercrombie ED
    Neuroscience; 2003; 119(3):777-86. PubMed ID: 12809698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dopamine-mediated volume transmission in midbrain is regulated by distinct extracellular geometry and uptake.
    Cragg SJ; Nicholson C; Kume-Kick J; Tao L; Rice ME
    J Neurophysiol; 2001 Apr; 85(4):1761-71. PubMed ID: 11287497
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of somatodendritic dopamine release by corticotropin-releasing factor via the inhibition of voltage-operated Ca2+ channels.
    Kim Y; Park MK; Chung S
    Neurosci Lett; 2009 Nov; 465(1):31-5. PubMed ID: 19729048
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Is there a significant somatodendritic uptake of dopamine in the substantia nigra? Evidence from the weaver mutant mouse.
    Simon JR; Ghetti B
    Neurochem Int; 1993 May; 22(5):471-7. PubMed ID: 8485453
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective expression of Parkinson's disease-related Leucine-rich repeat kinase 2 G2019S missense mutation in midbrain dopaminergic neurons impairs dopamine release and dopaminergic gene expression.
    Liu G; Sgobio C; Gu X; Sun L; Lin X; Yu J; Parisiadou L; Xie C; Sastry N; Ding J; Lohr KM; Miller GW; Mateo Y; Lovinger DM; Cai H
    Hum Mol Genet; 2015 Sep; 24(18):5299-312. PubMed ID: 26123485
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dysregulation of Norepinephrine Release in the Absence of Functional Synaptotagmin 7.
    Shih AM; Varghese L; Bittar A; Park SH; Chung JM; Shin OH
    J Cell Biochem; 2016 Jun; 117(6):1446-53. PubMed ID: 27043247
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synaptotagmin-1-dependent phasic axonal dopamine release is dispensable for basic motor behaviors in mice.
    Delignat-Lavaud B; Kano J; Ducrot C; Massé I; Mukherjee S; Giguère N; Moquin L; Lévesque C; Burke S; Denis R; Bourque MJ; Tchung A; Rosa-Neto P; Lévesque D; De Beaumont L; Trudeau LÉ
    Nat Commun; 2023 Jul; 14(1):4120. PubMed ID: 37433762
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Allosteric stabilization of calcium and phosphoinositide dual binding engages several synaptotagmins in fast exocytosis.
    Kobbersmed JRL; Berns MMM; Ditlevsen S; Sørensen JB; Walter AM
    Elife; 2022 Aug; 11():. PubMed ID: 35929728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. I(h) channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain.
    Neuhoff H; Neu A; Liss B; Roeper J
    J Neurosci; 2002 Feb; 22(4):1290-302. PubMed ID: 11850457
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.