These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 35232669)

  • 41. Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: insights from the recombinant Escherichia coli.
    Leong YK; Show PL; Ooi CW; Ling TC; Lan JC
    J Biotechnol; 2014 Jun; 180():52-65. PubMed ID: 24698847
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Perspectives to produce positively or negatively charged polyhydroxyalkanoic acids.
    Scholz C
    Appl Microbiol Biotechnol; 2010 Oct; 88(4):829-37. PubMed ID: 20721548
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Screening and identification of polyhydroxyalkanoates producing bacteria and biochemical characterization of their possible application.
    Sangkharak K; Prasertsan P
    J Gen Appl Microbiol; 2012; 58(3):173-82. PubMed ID: 22878735
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polyhydroxyalkanoates - what are the uses? Current challenges and perspectives.
    Masood F; Yasin T; Hameed A
    Crit Rev Biotechnol; 2015; 35(4):514-21. PubMed ID: 24963700
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties, biochemical synthesis, and their applications.
    Behera S; Priyadarshanee M; Vandana ; Das S
    Chemosphere; 2022 May; 294():133723. PubMed ID: 35085614
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Production and characterization of polyhydroxyalkanoates from industrial waste using soil bacterial isolates.
    Shah S; Kumar A
    Braz J Microbiol; 2021 Jun; 52(2):715-726. PubMed ID: 33590449
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Film forming microbial biopolymers for commercial applications--a review.
    Vijayendra SV; Shamala TR
    Crit Rev Biotechnol; 2014 Dec; 34(4):338-57. PubMed ID: 23919238
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Polyhydroxyalkanoates from extremophiles: A review.
    Obulisamy PK; Mehariya S
    Bioresour Technol; 2021 Apr; 325():124653. PubMed ID: 33465644
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bacterial polyhydroxyalkanoates.
    Lee SY
    Biotechnol Bioeng; 1996 Jan; 49(1):1-14. PubMed ID: 18623547
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recent Advances in the Use of Polyhydroyalkanoates in Biomedicine.
    Rodriguez-Contreras A
    Bioengineering (Basel); 2019 Sep; 6(3):. PubMed ID: 31547270
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance.
    de Eugenio LI; Escapa IF; Morales V; Dinjaski N; Galán B; García JL; Prieto MA
    Environ Microbiol; 2010 Jan; 12(1):207-21. PubMed ID: 19788655
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Medical application of microbial biopolyesters polyhydroxyalkanoates.
    Wu Q; Wang Y; Chen GQ
    Artif Cells Blood Substit Immobil Biotechnol; 2009; 37(1):1-12. PubMed ID: 19132638
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Formation of polyhydroxyalkanoates during the dual-nutrient-limited zone by Ralstonia eutropha].
    Yan Q; Du GC; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2003 Jul; 19(4):497-501. PubMed ID: 15969073
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications.
    Misra SK; Valappil SP; Roy I; Boccaccini AR
    Biomacromolecules; 2006 Aug; 7(8):2249-58. PubMed ID: 16903667
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microbial polyhydroxyalkanoates as medical implant biomaterials.
    Chen GQ; Zhang J
    Artif Cells Nanomed Biotechnol; 2018 Feb; 46(1):1-18. PubMed ID: 28849679
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Medium chain length polyhydroxyalkanoates consisting primarily of unsaturated 3-hydroxy-5-cis-dodecanoate synthesized by newly isolated bacteria using crude glycerol.
    Muangwong A; Boontip T; Pachimsawat J; Napathorn SC
    Microb Cell Fact; 2016 Mar; 15():55. PubMed ID: 26988857
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Marine sponge-associated bacteria as a potential source for polyhydroxyalkanoates.
    Sathiyanarayanan G; Saibaba G; Kiran GS; Yang YH; Selvin J
    Crit Rev Microbiol; 2017 May; 43(3):294-312. PubMed ID: 27824282
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Polyhydroxyalkanoates (PHA) for therapeutic applications.
    Zhang J; Shishatskaya EI; Volova TG; da Silva LF; Chen GQ
    Mater Sci Eng C Mater Biol Appl; 2018 May; 86():144-150. PubMed ID: 29525089
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements.
    Anjum A; Zuber M; Zia KM; Noreen A; Anjum MN; Tabasum S
    Int J Biol Macromol; 2016 Aug; 89():161-74. PubMed ID: 27126172
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The metabolic pathways of polyhydroxyalkanoates and exopolysaccharides synthesized by Haloferax mediterranei in response to elevated salinity.
    Pacholak A; Gao ZL; Gong XY; Kaczorek E; Cui YW
    J Proteomics; 2021 Feb; 232():104065. PubMed ID: 33276193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.