BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 35233800)

  • 1. Lack of leaf carbonic anhydrase activity eliminates the C
    DiMario RJ; Giuliani R; Ubierna N; Slack AD; Cousins AB; Studer AJ
    Plant Cell Environ; 2022 May; 45(5):1382-1397. PubMed ID: 35233800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limitation of C4 photosynthesis by low carbonic anhydrase activity increases with temperature but does not influence mesophyll CO2 conductance.
    Crawford JD; Cousins AB
    J Exp Bot; 2022 Jan; 73(3):927-938. PubMed ID: 34698863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights from transcriptome profiling on the non-photosynthetic and stomatal signaling response of maize carbonic anhydrase mutants to low CO
    Kolbe AR; Studer AJ; Cornejo OE; Cousins AB
    BMC Genomics; 2019 Feb; 20(1):138. PubMed ID: 30767781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbonic anhydrase and its influence on carbon isotope discrimination during C4 photosynthesis. Insights from antisense RNA in Flaveria bidentis.
    Cousins AB; Badger MR; von Caemmerer S
    Plant Physiol; 2006 May; 141(1):232-42. PubMed ID: 16543411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photosynthetic flexibility in maize exposed to salinity and shade.
    Sharwood RE; Sonawane BV; Ghannoum O
    J Exp Bot; 2014 Jul; 65(13):3715-24. PubMed ID: 24692650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A two-dimensional microscale model of gas exchange during photosynthesis in maize (Zea mays L.) leaves.
    Retta M; Ho QT; Yin X; Verboven P; Berghuijs HNC; Struik PC; Nicolaï BM
    Plant Sci; 2016 May; 246():37-51. PubMed ID: 26993234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesophyll conductance in Zea mays responds transiently to CO
    Kolbe AR; Cousins AB
    New Phytol; 2018 Mar; 217(4):1463-1474. PubMed ID: 29220090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cold acclimation of mesophyll conductance, bundle-sheath conductance and leakiness in Miscanthus × giganteus.
    Serrano-Romero EA; Cousins AB
    New Phytol; 2020 Jun; 226(6):1594-1606. PubMed ID: 32112409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of reduced carbonic anhydrase activity on CO2 assimilation rates in Setaria viridis: a transgenic analysis.
    Osborn HL; Alonso-Cantabrana H; Sharwood RE; Covshoff S; Evans JR; Furbank RT; von Caemmerer S
    J Exp Bot; 2017 Jan; 68(2):299-310. PubMed ID: 27702996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature Responses of C4 Photosynthesis: Biochemical Analysis of Rubisco, Phosphoenolpyruvate Carboxylase, and Carbonic Anhydrase in Setaria viridis.
    Boyd RA; Gandin A; Cousins AB
    Plant Physiol; 2015 Nov; 169(3):1850-61. PubMed ID: 26373659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Limited Role for Carbonic Anhydrase in C4 Photosynthesis as Revealed by a ca1ca2 Double Mutant in Maize.
    Studer AJ; Gandin A; Kolbe AR; Wang L; Cousins AB; Brutnell TP
    Plant Physiol; 2014 Jun; 165(2):608-617. PubMed ID: 24706552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The coordination of C4 photosynthesis and the CO2-concentrating mechanism in maize and Miscanthus x giganteus in response to transient changes in light quality.
    Sun W; Ubierna N; Ma JY; Walker BJ; Kramer DM; Cousins AB
    Plant Physiol; 2014 Mar; 164(3):1283-92. PubMed ID: 24488966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A low CO2-responsive mutant of Setaria viridis reveals that reduced carbonic anhydrase limits C4 photosynthesis.
    Chatterjee J; Coe RA; Acebron K; Thakur V; Yennamalli RM; Danila F; Lin HC; Balahadia CP; Bagunu E; Padhma PPOS; Bala S; Yin X; Rizal G; Dionora J; Furbank RT; von Caemmerer S; Quick WP
    J Exp Bot; 2021 Apr; 72(8):3122-3136. PubMed ID: 33528493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesophyll conductance response to short-term changes in pCO
    Pathare VS; DiMario RJ; Koteyeva N; Cousins AB
    New Phytol; 2022 Nov; 236(4):1281-1295. PubMed ID: 35959528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolite pools and carbon flow during C4 photosynthesis in maize: 13CO2 labeling kinetics and cell type fractionation.
    Arrivault S; Obata T; Szecówka M; Mengin V; Guenther M; Hoehne M; Fernie AR; Stitt M
    J Exp Bot; 2017 Jan; 68(2):283-298. PubMed ID: 27834209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photosynthetic Linear Electron Flow Drives CO
    Shimakawa G; Miyake C
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34063101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Carbonic Anhydrase, ZmCA4, Contributes to Photosynthetic Efficiency and Modulates CO2 Signaling Gene Expression by Interacting with Aquaporin ZmPIP2;6 in Maize.
    Zhou L; Xiang X; Ji D; Chen Q; Ma T; Wang J; Liu C
    Plant Cell Physiol; 2024 Feb; 65(2):243-258. PubMed ID: 37955399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of an intermediate C
    Rangan P; Wankhede DP; Subramani R; Chinnusamy V; Malik SK; Baig MJ; Singh K; Henry R
    Photosynth Res; 2022 Sep; 153(3):125-134. PubMed ID: 35648247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of carbonic anhydrase in C4 plants.
    Ludwig M
    Curr Opin Plant Biol; 2016 Jun; 31():16-22. PubMed ID: 27016649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of CO
    Huang W; Jin Q; Yin L; Li W
    Ecotoxicol Environ Saf; 2020 Oct; 202():110955. PubMed ID: 32800229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.