These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35234235)

  • 1. Sub-micron thick liquid sheets produced by isotropically etched glass nozzles.
    Crissman CJ; Mo M; Chen Z; Yang J; Huyke DA; Glenzer SH; Ledbetter K; F Nunes JP; Ng ML; Wang H; Shen X; Wang X; DePonte DP
    Lab Chip; 2022 Mar; 22(7):1365-1373. PubMed ID: 35234235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic liquid sheets as large-area targets for high repetition XFELs.
    Hoffman DJ; Van Driel TB; Kroll T; Crissman CJ; Ryland ES; Nelson KJ; Cordones AA; Koralek JD; DePonte DP
    Front Mol Biosci; 2022; 9():1048932. PubMed ID: 36567947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delivery of stable ultra-thin liquid sheets in vacuum for biochemical spectroscopy.
    Barnard JCT; Lee JP; Alexander O; Jarosch S; Garratt D; Picciuto R; Kowalczyk K; Ferchaud C; Gregory A; Matthews M; Marangos JP
    Front Mol Biosci; 2022; 9():1044610. PubMed ID: 36452452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capabilities and Limitations of Fire-Shaping to Produce Glass Nozzles.
    Rubio A; Rodríguez S; Cabezas MG
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33271928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heating methods for reducing unevenness softening of mouthguard sheets in vacuum-pressure formation.
    Takahashi M; Koide K; Satoh Y; Iwasaki S
    Dent Traumatol; 2016 Aug; 32(4):316-20. PubMed ID: 26710213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Filling of High-Concentration Monoclonal Antibody Formulations into Pre-filled Syringes: Investigating Formulation-Nozzle Interactions To Minimize Nozzle Clogging.
    Shieu W; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2015; 69(3):417-26. PubMed ID: 26048747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal heating condition of mouthguard sheet in vacuum-pressure formation: part 3 styrene-based thermoplastic elastomer.
    Takahashi M; Satoh Y; Iwasaki SI
    Dent Traumatol; 2016 Dec; 32(6):464-468. PubMed ID: 27059759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orthogonal Optimization Research on Various Nozzles of High-Speed Centrifugal Spinning.
    Zhang Z; Liu K; Li W; Ji Q; Xu Q; Lai Z; Ke C
    Front Bioeng Biotechnol; 2022; 10():884316. PubMed ID: 35656193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water-assisted femtosecond laser machining of electrospray nozzles on glass microfluidic devices.
    An R; Hoffman MD; Donoghue MA; Hunt AJ; Jacobson SC
    Opt Express; 2008 Sep; 16(19):15206-11. PubMed ID: 18795059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal heating condition of ethylene-vinyl acetate co-polymer mouthguard sheet in vacuum-pressure formation.
    Takahashi M; Koide K; Suzuki H; Iwasaki S
    Dent Traumatol; 2016 Aug; 32(4):311-5. PubMed ID: 26635146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vacuum pressure generation via microfabricated converging-diverging nozzles for operation of automated pneumatic logic.
    Christoforidis T; Werner EM; Hui EE; Eddington DT
    Biomed Microdevices; 2016 Aug; 18(4):74. PubMed ID: 27469475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glass transition in thin supported polystyrene films probed by temperature-modulated ellipsometry in vacuum.
    Efremov MY; Kiyanova AV; Last J; Soofi SS; Thode C; Nealey PF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021501. PubMed ID: 23005763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micrometer-thickness liquid sheet jets flowing in vacuum.
    Galinis G; Strucka J; Barnard JCT; Braun A; Smith RA; Marangos JP
    Rev Sci Instrum; 2017 Aug; 88(8):083117. PubMed ID: 28863712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature measurements of liquid flat jets in vacuum.
    Chang YP; Yin Z; Balciunas T; Wörner HJ; Wolf JP
    Struct Dyn; 2022 Jan; 9(1):014901. PubMed ID: 35224132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thickness of mouthguard sheets after vacuum-pressure formation: influence of mouthguard sheet material.
    Takahashi M; Koide K; Iwasaki S
    Dent Traumatol; 2016 Jun; 32(3):201-5. PubMed ID: 26446242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydraulic high-pressure nebulization of solutions and dispersions for respiratory drug delivery.
    Moore JM; Pham S; Wiedmann T
    Pharm Dev Technol; 2000; 5(1):105-13. PubMed ID: 10669924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid-sheet jets for terahertz spectroscopy.
    Kondoh M; Tsubouchi M
    Opt Express; 2014 Jun; 22(12):14135-47. PubMed ID: 24977512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A liquid flatjet system for solution phase soft-x-ray spectroscopy.
    Ekimova M; Quevedo W; Faubel M; Wernet P; Nibbering ET
    Struct Dyn; 2015 Sep; 2(5):054301. PubMed ID: 26798824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal heating condition of mouthguard sheet in vacuum-pressure formation: part 2 Olefin-based thermoplastic elastomer.
    Takahashi M; Koide K
    Dent Traumatol; 2016 Apr; 32(2):90-4. PubMed ID: 26341504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mouthguard sheet temperature after heating.
    Mizuhashi F; Koide K
    Dent Traumatol; 2018 Oct; 34(5):365-369. PubMed ID: 29920939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.