These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 3523432)

  • 21. A pilot study comparing the cognitive demand of walking for transfemoral amputees using the Intelligent Prosthesis with that using conventionally damped knees.
    Heller BW; Datta D; Howitt J
    Clin Rehabil; 2000 Oct; 14(5):518-22. PubMed ID: 11043877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Technology efficacy in active prosthetic knees for transfemoral amputees: a quantitative evaluation.
    El-Sayed AM; Hamzaid NA; Abu Osman NA
    ScientificWorldJournal; 2014; 2014():297431. PubMed ID: 25110727
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multifunctional above-knee prosthesis for stairs' walking.
    Koganezawa K; Fujimoto H; Kato I
    Prosthet Orthot Int; 1987 Dec; 11(3):139-45. PubMed ID: 3438160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of mechanical energy profiles of passive and active below-knee prostheses: a case study.
    Takahashi KZ; Horne JR; Stanhope SJ
    Prosthet Orthot Int; 2015 Apr; 39(2):150-6. PubMed ID: 24418933
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of heel lifting on transtibial amputee gait before and after treadmill walking: a case study.
    Yeung LF; Leung AK; Zhang M; Lee WC
    Prosthet Orthot Int; 2013 Aug; 37(4):317-23. PubMed ID: 23124990
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mobility function of a prosthetic knee joint with an automatic stance phase lock.
    Andrysek J; Klejman S; Torres-Moreno R; Heim W; Steinnagel B; Glasford S
    Prosthet Orthot Int; 2011 Jun; 35(2):163-70. PubMed ID: 21697198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ankle-Knee prosthesis with powered ankle and energy transfer for CYBERLEGs α-prototype.
    Geeroms J; Flynn L; Jimenez-Fabian R; Vanderborght B; Lefeber D
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650352. PubMed ID: 24187171
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Re: Below-knee amputee gait with dynamic elastic response prosthetic feet: a pilot study.
    Michael JW
    J Rehabil Res Dev; 1992; 29(1):x. PubMed ID: 1740773
    [No Abstract]   [Full Text] [Related]  

  • 29. Conventional 4-bar linkage knee mechanisms: a strength-weakness analysis.
    de Vries J
    J Rehabil Res Dev; 1995 Feb; 32(1):36-42. PubMed ID: 7760266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Agonist-antagonist active knee prosthesis: a preliminary study in level-ground walking.
    Martinez-Villalpando EC; Herr H
    J Rehabil Res Dev; 2009; 46(3):361-73. PubMed ID: 19675988
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preliminary evaluation of an automatically stance-phase controlled pediatric prosthetic knee joint using quantitative gait analysis.
    Andrysek J; Redekop S; Naumann S
    Arch Phys Med Rehabil; 2007 Apr; 88(4):464-70. PubMed ID: 17398247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Mauch hydraulic knee unit for above knee amputation.
    Volatile TB; Roberson JR; Whitesides TE
    Orthopedics; 1985 Feb; 8(2):229-30. PubMed ID: 4094972
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of prosthetic ankle mobility in the sagittal plane on the gait of transfemoral amputees wearing a stance phase controlled knee prosthesis.
    Lee S; Hong J
    Proc Inst Mech Eng H; 2009 Feb; 223(2):263-71. PubMed ID: 19278201
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis.
    Yakimovich T; Lemaire ED; Kofman J
    Clin Biomech (Bristol); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mathematical modelling and field trials of an inexpensive endoskeletal above-knee prosthesis.
    Mohan D; Sethi PK; Ravi R
    Prosthet Orthot Int; 1992 Aug; 16(2):118-23. PubMed ID: 1408670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compensatory mechanism involving the hip joint of the intact limb during gait in unilateral trans-tibial amputees.
    Grumillier C; Martinet N; Paysant J; André JM; Beyaert C
    J Biomech; 2008 Oct; 41(14):2926-31. PubMed ID: 18771768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compensatory mechanism involving the knee joint of the intact limb during gait in unilateral below-knee amputees.
    Beyaert C; Grumillier C; Martinet N; Paysant J; André JM
    Gait Posture; 2008 Aug; 28(2):278-84. PubMed ID: 18295487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparative evaluation of oxygen consumption and gait pattern in amputees using Intelligent Prostheses and conventionally damped knee swing-phase control.
    Datta D; Heller B; Howitt J
    Clin Rehabil; 2005 Jun; 19(4):398-403. PubMed ID: 15929508
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gait initiation of persons with below-knee amputation: the characterization and comparison of force profiles.
    Rossi SA; Doyle W; Skinner HB
    J Rehabil Res Dev; 1995 May; 32(2):120-7. PubMed ID: 7562651
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Disarticulation of the knee in children. A functional assessment.
    Loder RT; Herring JA
    J Bone Joint Surg Am; 1987 Oct; 69(8):1155-60. PubMed ID: 3667645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.