BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 35234375)

  • 1. [Oxidosqualene cyclases in triterpenoids biosynthesis: a review].
    Chen C; Pang Y; Chen Q; Li C; Lü B
    Sheng Wu Gong Cheng Xue Bao; 2022 Feb; 38(2):443-459. PubMed ID: 35234375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase: a chemistry-biology interdisciplinary study of the protein's structure-function-reaction mechanism relationships.
    Wu TK; Chang CH; Liu YT; Wang TT
    Chem Rec; 2008; 8(5):302-25. PubMed ID: 18956480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of triterpenes and functional characterization of oxidosqualene cyclases involved in triterpene biosynthesis in lettuce (Lactuca sativa).
    Choi HS; Han JY; Choi YE
    Plant Sci; 2020 Dec; 301():110656. PubMed ID: 33218626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diverse triterpene skeletons are derived from the expansion and divergent evolution of 2,3-oxidosqualene cyclases in plants.
    Wang J; Guo Y; Yin X; Wang X; Qi X; Xue Z
    Crit Rev Biochem Mol Biol; 2022 Apr; 57(2):113-132. PubMed ID: 34601979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic cyclization of dioxidosqualene to heterocyclic triterpenes.
    Shan H; Segura MJ; Wilson WK; Lodeiro S; Matsuda SP
    J Am Chem Soc; 2005 Dec; 127(51):18008-9. PubMed ID: 16366544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and Characterization of Oxidosqualene Cyclases Involved in Taraxasterol, Taraxerol and Bauerenol Triterpene Biosynthesis in Taraxacum coreanum.
    Han JY; Jo HJ; Kwon EK; Choi YE
    Plant Cell Physiol; 2019 Jul; 60(7):1595-1603. PubMed ID: 31020326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deletion of the Gly600 residue of Alicyclobacillus acidocaldarius squalene cyclase alters the substrate specificity into that of the eukaryotic-type cyclase specific to (3S)-2,3-oxidosqualene.
    Hoshino T; Shimizu K; Sato T
    Angew Chem Int Ed Engl; 2004 Dec; 43(48):6700-3. PubMed ID: 15593147
    [No Abstract]   [Full Text] [Related]  

  • 8. Divergent evolution of oxidosqualene cyclases in plants.
    Xue Z; Duan L; Liu D; Guo J; Ge S; Dicks J; ÓMáille P; Osbourn A; Qi X
    New Phytol; 2012 Mar; 193(4):1022-1038. PubMed ID: 22150097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the functions of friedelane-type triterpene cyclases from four celastrol-producing plants.
    Lu Y; Luo Y; Zhou J; Hu T; Tu L; Tong Y; Su P; Liu Y; Wang J; Jiang Z; Wu X; Chen X; Huang L; Gao W
    Plant J; 2022 Feb; 109(3):555-567. PubMed ID: 34750899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids.
    Andre CM; Legay S; Deleruelle A; Nieuwenhuizen N; Punter M; Brendolise C; Cooney JM; Lateur M; Hausman JF; Larondelle Y; Laing WA
    New Phytol; 2016 Sep; 211(4):1279-94. PubMed ID: 27214242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic insights into oxidosqualene cyclizations through homology modeling.
    Schulz-Gasch T; Stahl M
    J Comput Chem; 2003 Apr; 24(6):741-53. PubMed ID: 12666166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arabidopsis thaliana LUP1 converts oxidosqualene to multiple triterpene alcohols and a triterpene diol.
    Segura MJ; Meyer MM; Matsuda SP
    Org Lett; 2000 Jul; 2(15):2257-9. PubMed ID: 10930257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A putative precursor of isomalabaricane triterpenoids from lanosterol synthase mutants.
    Lodeiro S; Wilson WK; Shan H; Matsuda SP
    Org Lett; 2006 Feb; 8(3):439-42. PubMed ID: 16435854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-directed mutagenesis of squalene-hopene cyclase: altered substrate specificity and product distribution.
    Dang T; Prestwich GD
    Chem Biol; 2000 Aug; 7(8):643-9. PubMed ID: 11048954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning and functional characterization of multiple ApOSCs from Andrographis paniculata.
    Wang J; Lin HX; Zhao H; Guo J; Su P; Yang J; Wu XY; Huang LQ; Gao W
    Chin J Nat Med; 2020 Sep; 18(9):659-665. PubMed ID: 32928509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of oxidosqualene cyclases from Trichosanthes cucumerina L. reveals key amino acids responsible for substrate specificity of isomultiflorenol synthase.
    Lertphadungkit P; Qiao X; Ye M; Bunsupa S
    Planta; 2022 Aug; 256(3):58. PubMed ID: 35980476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Squalene-hopene cyclases.
    Siedenburg G; Jendrossek D
    Appl Environ Microbiol; 2011 Jun; 77(12):3905-15. PubMed ID: 21531832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthetic diversity in plant triterpene cyclization.
    Phillips DR; Rasbery JM; Bartel B; Matsuda SP
    Curr Opin Plant Biol; 2006 Jun; 9(3):305-14. PubMed ID: 16581287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of 2,3-oxidosqualene cyclases.
    Taton M; Benveniste P; Rahier A; Johnson WS; Liu HT; Sudhakar AR
    Biochemistry; 1992 Sep; 31(34):7892-8. PubMed ID: 1510977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-directed mutagenesis and substrate compatibility to reveal the structure-function relationships of plant oxidosqualene cyclases.
    Chen K; Zhang M; Ye M; Qiao X
    Nat Prod Rep; 2021 Dec; 38(12):2261-2275. PubMed ID: 33988197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.