BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 35234398)

  • 1. [Optimization of CRISPR/Cas9-based multiplex base editing in
    Lu H; Zhang Q; Yu S; Wang Y; Kang M; Han S; Liu Y; Wang M
    Sheng Wu Gong Cheng Xue Bao; 2022 Feb; 38(2):780-795. PubMed ID: 35234398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic investigation of CRISPR-Cas9 configurations for flexible and efficient genome editing in Corynebacterium glutamicum NRRL-B11474.
    Cameron Coates R; Blaskowski S; Szyjka S; van Rossum HM; Vallandingham J; Patel K; Serber Z; Dean J
    J Ind Microbiol Biotechnol; 2019 Feb; 46(2):187-201. PubMed ID: 30484125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.
    Wang B; Hu Q; Zhang Y; Shi R; Chai X; Liu Z; Shang X; Zhang Y; Wen T
    Microb Cell Fact; 2018 Apr; 17(1):63. PubMed ID: 29685154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system.
    Peng F; Wang X; Sun Y; Dong G; Yang Y; Liu X; Bai Z
    Microb Cell Fact; 2017 Nov; 16(1):201. PubMed ID: 29137643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Fidelity Cytosine Base Editing in a GC-Rich Corynebacterium glutamicum with Reduced DNA Off-Target Editing Effects.
    Heo YB; Hwang GH; Kang SW; Bae S; Woo HM
    Microbiol Spectr; 2022 Dec; 10(6):e0376022. PubMed ID: 36374037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Optimization of base editing in Corynebacterium glutamicum].
    Li J; Liu Y; Wang Y; Yu P; Zheng P; Wang M
    Sheng Wu Gong Cheng Xue Bao; 2020 Jan; 36(1):143-151. PubMed ID: 32072789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined genome editing and transcriptional repression for metabolic pathway engineering in Corynebacterium glutamicum using a catalytically active Cas12a.
    Liu W; Tang D; Wang H; Lian J; Huang L; Xu Z
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):8911-8922. PubMed ID: 31583448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of CRISPR-Cas9 through promoter replacement and efficient production of L-homoserine in Corynebacterium glutamicum.
    Li N; Wang M; Yu S; Zhou J
    Biotechnol J; 2021 Aug; 16(8):e2100093. PubMed ID: 34018325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplex gene editing and large DNA fragment deletion by the CRISPR/Cpf1-RecE/T system in Corynebacterium glutamicum.
    Zhao N; Li L; Luo G; Xie S; Lin Y; Han S; Huang Y; Zheng S
    J Ind Microbiol Biotechnol; 2020 Aug; 47(8):599-608. PubMed ID: 32876764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced production of D-pantothenic acid in Corynebacterium glutamicum using an efficient CRISPR-Cpf1 genome editing method.
    Su R; Wang T; Bo T; Cai N; Yuan M; Wu C; Jiang H; Peng H; Chen N; Li Y
    Microb Cell Fact; 2023 Jan; 22(1):3. PubMed ID: 36609377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome Editing of Corynebacterium glutamicum Using CRISPR-Cpf1 System.
    Wen Z; Qian F; Zhang J; Jiang Y; Yang S
    Methods Mol Biol; 2022; 2479():189-206. PubMed ID: 35583740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple dual-inducible CRISPR interference system for multiple gene targeting in Corynebacterium glutamicum.
    Gauttam R; Seibold GM; Mueller P; Weil T; Weiß T; Handrick R; Eikmanns BJ
    Plasmid; 2019 May; 103():25-35. PubMed ID: 30954454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Base Genome Editing in
    Kim HJ; Oh SY; Lee SJ
    J Microbiol Biotechnol; 2020 Oct; 30(10):1583-1591. PubMed ID: 32807756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Single Transcript CRISPR-Cas9 System for Multiplex Genome Editing in Plants.
    Tang X; Zhong Z; Ren Q; Liu B; Zhang Y
    Methods Mol Biol; 2019; 1917():75-82. PubMed ID: 30610629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum.
    Jiang Y; Qian F; Yang J; Liu Y; Dong F; Xu C; Sun B; Chen B; Xu X; Li Y; Wang R; Yang S
    Nat Commun; 2017 May; 8():15179. PubMed ID: 28469274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding targeting scope, editing window, and base transition capability of base editing in Corynebacterium glutamicum.
    Wang Y; Liu Y; Li J; Yang Y; Ni X; Cheng H; Huang T; Guo Y; Ma H; Zheng P; Wang M; Sun J; Ma Y
    Biotechnol Bioeng; 2019 Nov; 116(11):3016-3029. PubMed ID: 31317533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a gRNA Expression and Processing Platform for Efficient CRISPR-Cas9-Based Gene Editing and Gene Silencing in Candida tropicalis.
    Li Y; Zhang L; Yang H; Xia Y; Liu L; Chen X; Shen W
    Microbiol Spectr; 2022 Jun; 10(3):e0005922. PubMed ID: 35543560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain.
    Park J; Shin H; Lee SM; Um Y; Woo HM
    Microb Cell Fact; 2018 Jan; 17(1):4. PubMed ID: 29316926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing.
    Liang G; Zhang H; Lou D; Yu D
    Sci Rep; 2016 Feb; 6():21451. PubMed ID: 26891616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.