These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35234663)

  • 1. Predicting speech intelligibility from a selective attention decoding paradigm in cochlear implant users.
    Nogueira W; Dolhopiatenko H
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35234663
    [No Abstract]   [Full Text] [Related]  

  • 2. Toward Decoding Selective Attention From Single-Trial EEG Data in Cochlear Implant Users.
    Nogueira W; Cosatti G; Schierholz I; Egger M; Mirkovic B; Buchner A
    IEEE Trans Biomed Eng; 2020 Jan; 67(1):38-49. PubMed ID: 30932825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards decoding selective attention through cochlear implant electrodes as sensors in subjects with contralateral acoustic hearing.
    Aldag N; Büchner A; Lenarz T; Nogueira W
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 35062007
    [No Abstract]   [Full Text] [Related]  

  • 4. Decoding Selective Attention in Normal Hearing Listeners and Bilateral Cochlear Implant Users With Concealed Ear EEG.
    Nogueira W; Dolhopiatenko H; Schierholz I; Büchner A; Mirkovic B; Bleichner MG; Debener S
    Front Neurosci; 2019; 13():720. PubMed ID: 31379479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural envelope tracking as a measure of speech understanding in cochlear implant users.
    Verschueren E; Somers B; Francart T
    Hear Res; 2019 Mar; 373():23-31. PubMed ID: 30580236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective attention decoding in bimodal cochlear implant users.
    Dolhopiatenko H; Nogueira W
    Front Neurosci; 2022; 16():1057605. PubMed ID: 36711138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural tracking of the speech envelope in cochlear implant users.
    Somers B; Verschueren E; Francart T
    J Neural Eng; 2019 Feb; 16(1):016003. PubMed ID: 30444216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of head-related filtering and ear-specific decoding bias on auditory attention detection.
    Das N; Biesmans W; Bertrand A; Francart T
    J Neural Eng; 2016 Oct; 13(5):056014. PubMed ID: 27618842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG-based auditory attention detection: boundary conditions for background noise and speaker positions.
    Das N; Bertrand A; Francart T
    J Neural Eng; 2018 Dec; 15(6):066017. PubMed ID: 30207293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Where is the cocktail party? Decoding locations of attended and unattended moving sound sources using EEG.
    Bednar A; Lalor EC
    Neuroimage; 2020 Jan; 205():116283. PubMed ID: 31629828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural Decoding of the Speech Envelope: Effects of Intelligibility and Spectral Degradation.
    MacIntyre AD; Carlyon RP; Goehring T
    Trends Hear; 2024; 28():23312165241266316. PubMed ID: 39183533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
    Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C
    Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the relationship between auditory cognition and speech intelligibility in cochlear implant users: An ERP study.
    Finke M; Büchner A; Ruigendijk E; Meyer M; Sandmann P
    Neuropsychologia; 2016 Jul; 87():169-181. PubMed ID: 27212057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG decoding of the target speaker in a cocktail party scenario: considerations regarding dynamic switching of talker location.
    Teoh ES; Lalor EC
    J Neural Eng; 2019 Jun; 16(3):036017. PubMed ID: 30836345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Spectral Contrast Enhancement on Speech-on-Speech Intelligibility and Voice Cue Sensitivity in Cochlear Implant Users.
    El Boghdady N; Langner F; Gaudrain E; Başkent D; Nogueira W
    Ear Hear; 2021; 42(2):271-289. PubMed ID: 32925307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vowel intelligibility in children with cochlear implants: An acoustic and articulatory study.
    Turgeon C; Trudeau-Fisette P; Fitzpatrick E; Ménard L
    Int J Pediatr Otorhinolaryngol; 2017 Oct; 101():87-96. PubMed ID: 28964317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust decoding of the speech envelope from EEG recordings through deep neural networks.
    Thornton M; Mandic D; Reichenbach T
    J Neural Eng; 2022 Jul; 19(4):. PubMed ID: 35709698
    [No Abstract]   [Full Text] [Related]  

  • 18. Auditory cortical activity to different voice onset times in cochlear implant users.
    Han JH; Zhang F; Kadis DS; Houston LM; Samy RN; Smith ML; Dimitrijevic A
    Clin Neurophysiol; 2016 Feb; 127(2):1603-1617. PubMed ID: 26616545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strength of Attentional Modulation on Cortical Auditory Evoked Responses Correlates with Speech-in-Noise Performance in Bimodal Cochlear Implant Users.
    Lee JH; Shim H; Gantz B; Choi I
    Trends Hear; 2022; 26():23312165221141143. PubMed ID: 36464791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Different Acoustic Components on EEG-Based Auditory Attention Decoding in Noisy and Reverberant Conditions.
    Aroudi A; Mirkovic B; De Vos M; Doclo S
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):652-663. PubMed ID: 30843845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.