These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 35235006)

  • 41. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene.
    Ma T; Shi B; Ye Z; Li X; Liu M; Chen Y; Xia J; Nielsen J; Deng Z; Liu T
    Metab Eng; 2019 Mar; 52():134-142. PubMed ID: 30471360
    [TBL] [Abstract][Full Text] [Related]  

  • 42. De novo biosynthesis of sakuranetin from glucose by engineered Saccharomyces cerevisiae.
    Tu S; Xiao F; Mei C; Li S; Qiao P; Huang Z; He Y; Gong Z; Zhong W
    Appl Microbiol Biotechnol; 2023 Jun; 107(12):3899-3909. PubMed ID: 37148336
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metabolic Engineering of
    Guo J; Sun X; Yuan Y; Chen Q; Ou Z; Deng Z; Ma T; Liu T
    J Agric Food Chem; 2023 May; 71(19):7408-7417. PubMed ID: 37154424
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reconstruction of metabolic module with improved promoter strength increases the productivity of 2-phenylethanol in Saccharomyces cerevisiae.
    Wang Z; Jiang M; Guo X; Liu Z; He X
    Microb Cell Fact; 2018 Apr; 17(1):60. PubMed ID: 29642888
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of L-ornithine.
    Qin J; Zhou YJ; Krivoruchko A; Huang M; Liu L; Khoomrung S; Siewers V; Jiang B; Nielsen J
    Nat Commun; 2015 Sep; 6():8224. PubMed ID: 26345617
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficient production of vindoline from tabersonine by metabolically engineered Saccharomyces cerevisiae.
    Liu T; Huang Y; Jiang L; Dong C; Gou Y; Lian J
    Commun Biol; 2021 Sep; 4(1):1089. PubMed ID: 34531512
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient production of 22(R)-hydroxycholesterol via combination optimization of Saccharomyces cerevisiae.
    Pang Y; Cheng X; Ban Y; Li Y; Lv B; Li C
    Biotechnol J; 2024 Jul; 19(7):e2400286. PubMed ID: 39014927
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in Saccharomyces cerevisiae.
    Zhou P; Xie W; Li A; Wang F; Yao Z; Bian Q; Zhu Y; Yu H; Ye L
    Enzyme Microb Technol; 2017 May; 100():28-36. PubMed ID: 28284309
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enzyme and Pathway Engineering for Improved Betanin Production in
    Li J; Wang L; Zhang N; Cheng S; Wu Y; Zhao GR
    ACS Synth Biol; 2024 Jun; 13(6):1916-1924. PubMed ID: 38861476
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Orthogonal Engineering of Biosynthetic Pathway for Efficient Production of Limonene in Saccharomyces cerevisiae.
    Cheng S; Liu X; Jiang G; Wu J; Zhang JL; Lei D; Yuan YJ; Qiao J; Zhao GR
    ACS Synth Biol; 2019 May; 8(5):968-975. PubMed ID: 31063692
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Systematic Engineering to Enhance 8-Hydroxygeraniol Production in Yeast.
    Wang H; Jiang G; Liang N; Dong T; Shan M; Yao M; Wang Y; Xiao W; Yuan Y
    J Agric Food Chem; 2023 Mar; 71(10):4319-4327. PubMed ID: 36857414
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Production of (S)-3-hydroxybutyrate by metabolically engineered Saccharomyces cerevisiae.
    Yun EJ; Kwak S; Kim SR; Park YC; Jin YS; Kim KH
    J Biotechnol; 2015 Sep; 209():23-30. PubMed ID: 26026703
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Alpha-Terpineol production from an engineered Saccharomyces cerevisiae cell factory.
    Zhang C; Li M; Zhao GR; Lu W
    Microb Cell Fact; 2019 Sep; 18(1):160. PubMed ID: 31547812
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Integration of a multi-step heterologous pathway in Saccharomyces cerevisiae for the production of abscisic acid.
    Otto M; Teixeira PG; Vizcaino MI; David F; Siewers V
    Microb Cell Fact; 2019 Nov; 18(1):205. PubMed ID: 31767000
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Engineering a growth-phase-dependent biosynthetic pathway for carotenoid production in Saccharomyces cerevisiae.
    Su B; Song D; Yang F; Zhu H
    J Ind Microbiol Biotechnol; 2020 May; 47(4-5):383-393. PubMed ID: 32236768
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biosensor-Enabled Directed Evolution to Improve Muconic Acid Production in Saccharomyces cerevisiae.
    Leavitt JM; Wagner JM; Tu CC; Tong A; Liu Y; Alper HS
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28296355
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid.
    Lee JY; Kang CD; Lee SH; Park YK; Cho KM
    Biotechnol Bioeng; 2015 Apr; 112(4):751-8. PubMed ID: 25363674
    [TBL] [Abstract][Full Text] [Related]  

  • 58. De Novo High-Titer Production of Delta-Tocotrienol in Recombinant
    Sun H; Yang J; Lin X; Li C; He Y; Cai Z; Zhang G; Song H
    J Agric Food Chem; 2020 Jul; 68(29):7710-7717. PubMed ID: 32580548
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metabolic engineering of Saccharomyces cerevisiae for efficient production of glucaric acid at high titer.
    Chen N; Wang J; Zhao Y; Deng Y
    Microb Cell Fact; 2018 May; 17(1):67. PubMed ID: 29729665
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Engineering a heterologous synthetic pathway in Escherichia coli for efficient production of biotin.
    Wei PP; Zhu FC; Chen CW; Li GS
    Biotechnol Lett; 2021 Jun; 43(6):1221-1228. PubMed ID: 33666816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.