BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35235007)

  • 1. Two α-L-arabinofuranosidases from Bifidobacterium longum subsp. longum are involved in arabinoxylan utilization.
    Komeno M; Yoshihara Y; Kawasaki J; Nabeshima W; Maeda K; Sasaki Y; Fujita K; Ashida H
    Appl Microbiol Biotechnol; 2022 Mar; 106(5-6):1957-1965. PubMed ID: 35235007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two Novel α-l-Arabinofuranosidases from
    Komeno M; Hayamizu H; Fujita K; Ashida H
    Appl Environ Microbiol; 2019 Mar; 85(6):. PubMed ID: 30635377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of Cooperative Degradation of Gum Arabic Arabinogalactan Protein by Bifidobacterium longum Surface Enzymes.
    Sasaki Y; Komeno M; Ishiwata A; Horigome A; Odamaki T; Xiao JZ; Tanaka K; Ito Y; Kitahara K; Ashida H; Fujita K
    Appl Environ Microbiol; 2022 Mar; 88(6):e0218721. PubMed ID: 35108084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel GH43 alpha-L-arabinofuranosidase from Humicola insolens: mode of action and synergy with GH51 alpha-L-arabinofuranosidases on wheat arabinoxylan.
    Sørensen HR; Jørgensen CT; Hansen CH; Jørgensen CI; Pedersen S; Meyer AS
    Appl Microbiol Biotechnol; 2006 Dec; 73(4):850-61. PubMed ID: 16944135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bifidobacterial GH146 β-L-arabinofuranosidase for the removal of β1,3-L-arabinofuranosides on plant glycans.
    Fujita K; Tsunomachi H; Lixia P; Maruyama S; Miyake M; Dakeshita A; Kitahara K; Tanaka K; Ito Y; Ishiwata A; Fushinobu S
    Appl Microbiol Biotechnol; 2024 Feb; 108(1):199. PubMed ID: 38324037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bifidobacterium longum subsp. longum Exo-β-1,3-Galactanase, an enzyme for the degradation of type II arabinogalactan.
    Fujita K; Sakaguchi T; Sakamoto A; Shimokawa M; Kitahara K
    Appl Environ Microbiol; 2014 Aug; 80(15):4577-84. PubMed ID: 24837371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two extracellular α-arabinofuranosidases are required for cereal-derived arabinoxylan metabolism by
    Friess L; Bottacini F; McAuliffe FM; O'Neill IJ; Cotter PD; Lee C; Munoz-Munoz J; van Sinderen D
    Gut Microbes; 2024; 16(1):2353229. PubMed ID: 38752423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple Transporters and Glycoside Hydrolases Are Involved in Arabinoxylan-Derived Oligosaccharide Utilization in Bifidobacterium pseudocatenulatum.
    Saito Y; Shigehisa A; Watanabe Y; Tsukuda N; Moriyama-Ohara K; Hara T; Matsumoto S; Tsuji H; Matsuki T
    Appl Environ Microbiol; 2020 Nov; 86(24):. PubMed ID: 33036985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Multifunctional Arabinofuranosidase/Endoxylanase/β-Xylosidase GH43 Enzyme from Paenibacillus curdlanolyticus B-6 and Its Synergistic Action To Produce Arabinose and Xylose from Cereal Arabinoxylan.
    Limsakul P; Phitsuwan P; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Ratanakhanokchai K
    Appl Environ Microbiol; 2021 Nov; 87(24):e0173021. PubMed ID: 34613758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradative enzymes for type II arabinogalactan side chains in Bifidobacterium longum subsp. longum.
    Fujita K; Sakamoto A; Kaneko S; Kotake T; Tsumuraya Y; Kitahara K
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1299-1310. PubMed ID: 30564851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the arabinoxylan-degrading machinery of the thermophilic bacterium Herbinix hemicellulosilytica-Six new xylanases, three arabinofuranosidases and one xylosidase.
    Mechelke M; Koeck DE; Broeker J; Roessler B; Krabichler F; Schwarz WH; Zverlov VV; Liebl W
    J Biotechnol; 2017 Sep; 257():122-130. PubMed ID: 28450260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constructing arabinofuranosidases for dual arabinoxylan debranching activity.
    Wang W; Andric N; Sarch C; Silva BT; Tenkanen M; Master ER
    Biotechnol Bioeng; 2018 Jan; 115(1):41-49. PubMed ID: 28868788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional Characterization of Endo- and Exo-Hydrolase Genes in Arabinan Degradation Gene Cluster of
    Kang Y; Choi CY; Kang J; Ju YR; Kim HB; Han NS; Kim TJ
    Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel 3-
    Sasaki Y; Horigome A; Odamaki T; Xiao JZ; Ishiwata A; Ito Y; Kitahara K; Fujita K
    Appl Environ Microbiol; 2021 Apr; 87(10):. PubMed ID: 33674431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular determinants of substrate specificity revealed by the structure of Clostridium thermocellum arabinofuranosidase 43A from glycosyl hydrolase family 43 subfamily 16.
    Goyal A; Ahmed S; Sharma K; Gupta V; Bule P; Alves VD; Fontes CM; Najmudin S
    Acta Crystallogr D Struct Biol; 2016 Dec; 72(Pt 12):1281-1289. PubMed ID: 27917828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolysis of wheat flour arabinoxylan, acid-debranched wheat flour arabinoxylan and arabino-xylo-oligosaccharides by β-xylanase, α-L-arabinofuranosidase and β-xylosidase.
    McCleary BV; McKie VA; Draga A; Rooney E; Mangan D; Larkin J
    Carbohydr Res; 2015 Apr; 407():79-96. PubMed ID: 25723624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterologous expression and characterization of a putative glycoside hydrolase family 43 arabinofuranosidase from Clostridium thermocellum B8.
    de Camargo BR; Claassens NJ; Quirino BF; Noronha EF; Kengen SWM
    Enzyme Microb Technol; 2018 Feb; 109():74-83. PubMed ID: 29224629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lacto-N-biosidase encoded by a novel gene of Bifidobacterium longum subspecies longum shows unique substrate specificity and requires a designated chaperone for its active expression.
    Sakurama H; Kiyohara M; Wada J; Honda Y; Yamaguchi M; Fukiya S; Yokota A; Ashida H; Kumagai H; Kitaoka M; Yamamoto K; Katayama T
    J Biol Chem; 2013 Aug; 288(35):25194-25206. PubMed ID: 23843461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabinoxylan-based substrate preferences and predicted metabolic properties of Bifidobacterium longum subspecies as a basis to design differential media.
    Calvete-Torre I; Sabater C; Delgado S; Ruas-Madiedo P; Rupérez-García A; Montilla A; Javier Moreno F; Margolles A; Ruiz L
    Food Res Int; 2023 May; 167():112711. PubMed ID: 37087214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate specificity of three recombinant α-L-arabinofuranosidases from Bifidobacterium adolescentis and their divergent action on arabinoxylan and arabinoxylan oligosaccharides.
    Lagaert S; Pollet A; Delcour JA; Lavigne R; Courtin CM; Volckaert G
    Biochem Biophys Res Commun; 2010 Nov; 402(4):644-50. PubMed ID: 20971079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.