BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35235302)

  • 1. Conjugated Polymer-Functionalized Stretchable Supramolecular Hydrogels to Monitor and Control Cellular Behavior.
    Zhang Q; Wang X; Cong Y; Kang Y; Wu Z; Li L
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12674-12683. PubMed ID: 35235302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering the Dynamics of Cell Adhesion Cues in Supramolecular Hydrogels for Facile Control over Cell Encapsulation and Behavior.
    Diba M; Spaans S; Hendrikse SIS; Bastings MMC; Schotman MJG; van Sprang JF; Wu DJ; Hoeben FJM; Janssen HM; Dankers PYW
    Adv Mater; 2021 Sep; 33(37):e2008111. PubMed ID: 34337776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular Hydrogels Based on DNA Self-Assembly.
    Shao Y; Jia H; Cao T; Liu D
    Acc Chem Res; 2017 Apr; 50(4):659-668. PubMed ID: 28299927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetically Interlocking Multiple-Units Polymerization of DNA Double Crossover and Its Application in Hydrogel Formation.
    Shi J; Zhu C; Li Q; Li Y; Chen L; Yang B; Xu JF; Dong Y; Mao C; Liu D
    Macromol Rapid Commun; 2021 Jul; 42(14):e2100182. PubMed ID: 34028914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular hydrogel-based protein and chemosensor array.
    Ikeda M; Ochi R; Hamachi I
    Lab Chip; 2010 Dec; 10(24):3325-34. PubMed ID: 20862441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bionic composite hydrogel with a hybrid covalent/noncovalent network promoting phenotypic maintenance of hyaline cartilage.
    Wang Q; Li X; Wang P; Yao Y; Xu Y; Chen Y; Sun Y; Jiang Q; Fan Y; Zhang X
    J Mater Chem B; 2020 May; 8(20):4402-4411. PubMed ID: 32242608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design Strategies of Stimuli-Responsive Supramolecular Hydrogels Relying on Structural Analyses and Cell-Mimicking Approaches.
    Shigemitsu H; Hamachi I
    Acc Chem Res; 2017 Apr; 50(4):740-750. PubMed ID: 28252940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy.
    Liu C; Guo X; Ruan C; Hu H; Jiang BP; Liang H; Shen XC
    Acta Biomater; 2019 Sep; 96():281-294. PubMed ID: 31319202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoresponsive Hydrogel Induced by Dual Supramolecular Assemblies and Its Controlled Release Property for Enhanced Anticancer Drug Delivery.
    Song X; Zhang Z; Zhu J; Wen Y; Zhao F; Lei L; Phan-Thien N; Khoo BC; Li J
    Biomacromolecules; 2020 Apr; 21(4):1516-1527. PubMed ID: 32159339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designs and Applications of Multi-stimuli Responsive FRET Processes in AIEgen-Functionalized and Bi-fluorophoric Supramolecular Materials.
    Wu CH; Nhien PQ; Cuc TTK; Hue BTB; Lin HC
    Top Curr Chem (Cham); 2022 Dec; 381(1):2. PubMed ID: 36495421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Fully Synthetic Corneal Stromal Construct via Supramolecular Hydrogel Engineering.
    Vrehen AF; Rutten MGTA; Dankers PYW
    Adv Healthc Mater; 2023 Dec; 12(32):e2301392. PubMed ID: 37747759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three distinct read-out modes for enzyme activity can operate in a semi-wet supramolecular hydrogel.
    Tamaru S; Kiyonaka S; Hamachi I
    Chemistry; 2005 Dec; 11(24):7294-304. PubMed ID: 16196071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creating polymer hydrogel microfibres with internal alignment via electrical and mechanical stretching.
    Zhang S; Liu X; Barreto-Ortiz SF; Yu Y; Ginn BP; DeSantis NA; Hutton DL; Grayson WL; Cui FZ; Korgel BA; Gerecht S; Mao HQ
    Biomaterials; 2014 Mar; 35(10):3243-51. PubMed ID: 24439410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new strategy for the preparation of supramolecular neutral hydrogels.
    Percec V; Bera TK; Butera RJ
    Biomacromolecules; 2002; 3(2):272-9. PubMed ID: 11888311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initial immune response to a FRET-based MMP sensor-immobilized silk fibroin hydrogel in vivo.
    Kambe Y; Yamaoka T
    Acta Biomater; 2021 Aug; 130():199-210. PubMed ID: 34087439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the affinity of amphiphilic guest molecules in a supramolecular polymer transient network.
    Schotman MJG; Fransen PP; Song J; Dankers PYW
    RSC Adv; 2022 May; 12(22):14052-14060. PubMed ID: 35558837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conjugated Molecule-Assisted Supramolecular Hydrogel with Enhanced Antibacterial and Antibiofouling Properties.
    Zhang Q; Wang X; Kang Y; Yao C; Li X; Li L
    ACS Appl Bio Mater; 2022 Jun; 5(6):3107-3114. PubMed ID: 35641434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural Polymer-Based Hydrogels with Enhanced Mechanical Performances: Preparation, Structure, and Property.
    Bao Z; Xian C; Yuan Q; Liu G; Wu J
    Adv Healthc Mater; 2019 Sep; 8(17):e1900670. PubMed ID: 31364824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force-Induced Shuttling of Rotaxanes Controls Fluorescence Resonance Energy Transfer in Polymer Hydrogels.
    Muramatsu T; Shimizu S; Clough JM; Weder C; Sagara Y
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):8502-8509. PubMed ID: 36732315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.