BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35235328)

  • 1. Evaluation of Ion Mobility Spectrometry for Improving Constitutional Assignment in Natural Product Mixtures.
    Carnevale Neto F; Clark TN; Lopes NP; Linington RG
    J Nat Prod; 2022 Mar; 85(3):519-529. PubMed ID: 35235328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion mobility-high resolution mass spectrometry in doping control analysis. Part II: Comparison of acquisition modes with and without ion mobility.
    Plachká K; Pezzatti J; Musenga A; Nicoli R; Kuuranne T; Rudaz S; Nováková L; Guillarme D
    Anal Chim Acta; 2021 Aug; 1175():338739. PubMed ID: 34330438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent applications of ion mobility spectrometry in natural product research.
    Masike K; Stander MA; de Villiers A
    J Pharm Biomed Anal; 2021 Feb; 195():113846. PubMed ID: 33422832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A five-dimensional data collection strategy for multicomponent discovery and characterization in Traditional Chinese Medicine: Gastrodia Rhizoma as a case study.
    Zhu H; Wu X; Huo J; Hou J; Long H; Zhang Z; Wang B; Tian M; Chen K; Guo D; Lei M; Wu W
    J Chromatogr A; 2021 Sep; 1653():462405. PubMed ID: 34332318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ion mobility-enabled and high-efficiency hybrid scan approach in combination with ultra-high performance liquid chromatography enabling the comprehensive characterization of the multicomponents from Carthamus tinctorius.
    Qian YX; Zhao DX; Wang HD; Sun H; Xiong Y; Xu XY; Hu WD; Liu MY; Chen BX; Hu Y; Li X; Jiang MT; Yang WZ; Gao XM
    J Chromatogr A; 2022 Mar; 1667():462904. PubMed ID: 35193067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-independent acquisition with ion mobility mass spectrometry for suspect screening of per- and polyfluoroalkyl substances in environmental water samples.
    Yukioka S; Tanaka S; Suzuki Y; Echigo S; Fujii S
    J Chromatogr A; 2021 Feb; 1638():461899. PubMed ID: 33493975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining Isotopologue Workflows and Simultaneous Multidimensional Separations to Detect, Identify, and Validate Metabolites in Untargeted Analyses.
    Dodds JN; Wang L; Patti GJ; Baker ES
    Anal Chem; 2022 Feb; 94(5):2527-2535. PubMed ID: 35089687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Data-Dependent Acquisition, Data-Independent Acquisition, and Parallel Reaction Monitoring in Trapped Ion Mobility Spectrometry-Time-of-Flight Tandem Mass Spectrometry-Based Lipidomics.
    Rudt E; Feldhaus M; Margraf CG; Schlehuber S; Schubert A; Heuckeroth S; Karst U; Jeck V; Meyer SW; Korf A; Hayen H
    Anal Chem; 2023 Jun; 95(25):9488-9496. PubMed ID: 37307407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating Peptide Fragment Ion Detection Using Traveling Wave Ion Mobility Spectrometry with Signal-Enhanced MS
    Rojas Echeverri JC; Volke D; Milkovska-Stamenova S; Hoffmann R
    Anal Chem; 2022 Aug; 94(31):10930-10941. PubMed ID: 35904512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-high pressure liquid chromatography coupled to travelling wave ion mobility-time of flight mass spectrometry for the screening of pharmaceutical metabolites in wastewater samples: Application to antiretrovirals.
    Mosekiemang TT; Stander MA; de Villiers A
    J Chromatogr A; 2021 Dec; 1660():462650. PubMed ID: 34788673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass spectrometry DDA parameters and global coverage of the metabolome: Spectral molecular networks of momordica cardiospermoides plants.
    Ramabulana AT; Petras D; Madala NE; Tugizimana F
    Metabolomics; 2023 Mar; 19(3):18. PubMed ID: 36920561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving protein and proteome coverage through data-independent multiplexed peptide fragmentation.
    Blackburn K; Mbeunkui F; Mitra SK; Mentzel T; Goshe MB
    J Proteome Res; 2010 Jul; 9(7):3621-37. PubMed ID: 20450226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel hybrid scan approach enabling the ion-mobility separation and the alternate data-dependent and data-independent acquisitions (HDDIDDA): Its combination with off-line two-dimensional liquid chromatography for comprehensively characterizing the multicomponents from Compound Danshen Dripping Pill.
    Wang HD; Wang HM; Wang XY; Xu XY; Hu Y; Li X; Shi XJ; Wang SM; Liu J; Qian YX; Gao XM; Yang WZ; Guo DA
    Anal Chim Acta; 2022 Feb; 1193():339320. PubMed ID: 35058017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utility of Ion-Mobility Spectrometry for Deducing Branching of Multiply Charged Glycans and Glycopeptides in a High-Throughput Positive ion LC-FLR-IMS-MS Workflow.
    Pallister EG; Choo MSF; Walsh I; Tai JN; Tay SJ; Yang YS; Ng SK; Rudd PM; Flitsch SL; Nguyen-Khuong T
    Anal Chem; 2020 Dec; 92(23):15323-15335. PubMed ID: 33166117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Applications of ion mobility-mass spectrometry in the chemical analysis in traditional Chinese medicines].
    Zhai R; Gao W; Li M; Yang H
    Se Pu; 2022 Sep; 40(9):782-787. PubMed ID: 36156624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Dual-Gated Structures for Lossless Ion Manipulations-Ion Mobility Orbitrap Mass Spectrometry Platform for Combined Ultra-High-Resolution Molecular Analysis.
    Hollerbach AL; Ibrahim YM; Meras V; Norheim RV; Huntley AP; Anderson GA; Metz TO; Ewing RG; Smith RD
    Anal Chem; 2023 Jun; 95(25):9531-9538. PubMed ID: 37307303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of ion mobility-high resolution mass spectrometry in metabolomics studies to provide near MS/MS quality data in a single injection.
    Gil-Solsona R; Sancho JV; Gassner AL; Weyermann C; Hernández F; Delémont O; Bijlsma L
    J Mass Spectrom; 2021 Mar; 56(5):e4718. PubMed ID: 33813797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-dimensional liquid chromatography/high-resolution mass spectrometry approach combined with computational data processing for the comprehensive characterization of the multicomponents from Cuscuta chinensis.
    Wang M; Xu XY; Wang HD; Wang HM; Liu MY; Hu WD; Chen BX; Jiang MT; Qi J; Li XH; Yang WZ; Gao XM
    J Chromatogr A; 2022 Jul; 1675():463162. PubMed ID: 35635871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive Immunopeptidomics by Leveraging Available Large-Scale Multi-HLA Spectral Libraries, Data-Independent Acquisition, and MS/MS Prediction.
    Pak H; Michaux J; Huber F; Chong C; Stevenson BJ; Müller M; Coukos G; Bassani-Sternberg M
    Mol Cell Proteomics; 2021; 20():100080. PubMed ID: 33845167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applying 'Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra' (SWATH) for systematic toxicological analysis with liquid chromatography-high-resolution tandem mass spectrometry.
    Arnhard K; Gottschall A; Pitterl F; Oberacher H
    Anal Bioanal Chem; 2015 Jan; 407(2):405-14. PubMed ID: 25366975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.