These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Ecosystem-scale methane flux in tropical peat swamp forest in Indonesia. Sakabe A; Itoh M; Hirano T; Kusin K Glob Chang Biol; 2018 Nov; 24(11):5123-5136. PubMed ID: 30175421 [TBL] [Abstract][Full Text] [Related]
6. Evidence for older carbon loss with lowered water tables and changing plant functional groups in peatlands. Stuart JEM; Tucker CL; Lilleskov EA; Kolka RK; Chimner RA; Heckman KA; Kane ES Glob Chang Biol; 2023 Feb; 29(3):780-793. PubMed ID: 36308039 [TBL] [Abstract][Full Text] [Related]
7. Minnesota peat viromes reveal terrestrial and aquatic niche partitioning for local and global viral populations. Ter Horst AM; Santos-Medellín C; Sorensen JW; Zinke LA; Wilson RM; Johnston ER; Trubl G; Pett-Ridge J; Blazewicz SJ; Hanson PJ; Chanton JP; Schadt CW; Kostka JE; Emerson JB Microbiome; 2021 Nov; 9(1):233. PubMed ID: 34836550 [TBL] [Abstract][Full Text] [Related]
8. Rate of warming affects temperature sensitivity of anaerobic peat decomposition and greenhouse gas production. Sihi D; Inglett PW; Gerber S; Inglett KS Glob Chang Biol; 2018 Jan; 24(1):e259-e274. PubMed ID: 28746792 [TBL] [Abstract][Full Text] [Related]
9. Vascular plant-mediated controls on atmospheric carbon assimilation and peat carbon decomposition under climate change. Gavazov K; Albrecht R; Buttler A; Dorrepaal E; Garnett MH; Gogo S; Hagedorn F; Mills RTE; Robroek BJM; Bragazza L Glob Chang Biol; 2018 Sep; 24(9):3911-3921. PubMed ID: 29569798 [TBL] [Abstract][Full Text] [Related]
10. A radiative forcing analysis of tropical peatlands before and after their conversion to agricultural plantations. Dommain R; Frolking S; Jeltsch-Thömmes A; Joos F; Couwenberg J; Glaser PH Glob Chang Biol; 2018 Nov; 24(11):5518-5533. PubMed ID: 30007100 [TBL] [Abstract][Full Text] [Related]
11. Climate drivers alter nitrogen availability in surface peat and decouple N Petro C; Carrell AA; Wilson RM; Duchesneau K; Noble-Kuchera S; Song T; Iversen CM; Childs J; Schwaner G; Chanton JP; Norby RJ; Hanson PJ; Glass JB; Weston DJ; Kostka JE Glob Chang Biol; 2023 Jun; 29(11):3159-3176. PubMed ID: 36999440 [TBL] [Abstract][Full Text] [Related]
12. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats. Treat CC; Wollheim WM; Varner RK; Grandy AS; Talbot J; Frolking S Glob Chang Biol; 2014 Aug; 20(8):2674-86. PubMed ID: 24616169 [TBL] [Abstract][Full Text] [Related]
13. Stronger negative priming effect and lower basal respiration rates in nutrient-poor as compared to nutrient-rich forestry-drained peatland. Linkosalmi M; Lohila A; Biasi C Rapid Commun Mass Spectrom; 2023 Aug; 37(16):e9540. PubMed ID: 37194121 [TBL] [Abstract][Full Text] [Related]
14. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Hicks Pries CE; van Logtestijn RS; Schuur EA; Natali SM; Cornelissen JH; Aerts R; Dorrepaal E Glob Chang Biol; 2015 Dec; 21(12):4508-19. PubMed ID: 26150277 [TBL] [Abstract][Full Text] [Related]
15. Constraints on microbial communities, decomposition and methane production in deep peat deposits. Kluber LA; Johnston ER; Allen SA; Hendershot JN; Hanson PJ; Schadt CW PLoS One; 2020; 15(2):e0223744. PubMed ID: 32027653 [TBL] [Abstract][Full Text] [Related]
16. Impact of fertiliser, water table, and warming on celery yield and CO Matysek M; Leake J; Banwart S; Johnson I; Page S; Kaduk J; Smalley A; Cumming A; Zona D Sci Total Environ; 2019 Jun; 667():179-190. PubMed ID: 30826678 [TBL] [Abstract][Full Text] [Related]
17. Changing climatic controls on the greenhouse gas balance of thermokarst bogs during succession after permafrost thaw. Heffernan L; Estop-Aragonés C; Kuhn MA; Holger-Knorr K; Olefeldt D Glob Chang Biol; 2024 Jul; 30(7):e17388. PubMed ID: 38967139 [TBL] [Abstract][Full Text] [Related]