These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
366 related articles for article (PubMed ID: 35235616)
21. Fatigue and Stress Distribution Analyses of Ceramic-Reinforced PEEK Abutments Restored with Monolithic Zirconia Crowns as an Alternative to Conventional Esthetic Abutments. Akan E; Velioğlu E; Çömlekoğlu ME; Çömlekoğlu MD Int J Oral Maxillofac Implants; 2022; 37(3):533-542. PubMed ID: 35727245 [TBL] [Abstract][Full Text] [Related]
22. Effect of fatigue loading and failure mode of different ceramic implant abutments. Cárdenas R; Sánchez D; Euán R; Flores AM J Prosthet Dent; 2022 Jun; 127(6):875-881. PubMed ID: 33483141 [TBL] [Abstract][Full Text] [Related]
23. Fracture Resistance and Mode of Failure of Ceramic versus Titanium Implant Abutments and Single Implant-Supported Restorations. Sghaireen MG Clin Implant Dent Relat Res; 2015 Jun; 17(3):554-61. PubMed ID: 24118925 [TBL] [Abstract][Full Text] [Related]
24. Fracture Resistance of Zirconia, Polyetheretherketone, and Polyetherketoneketone Implant Abutments After Aging. Türksayar AAD; Atsü SS Int J Oral Maxillofac Implants; 2021; 36(2):332-340. PubMed ID: 33909724 [TBL] [Abstract][Full Text] [Related]
25. Load to failure of different zirconia abutments for an internal hexagon implant. Yilmaz B; Salaita LG; Seidt JD; McGlumphy EA; Clelland NL J Prosthet Dent; 2015 Sep; 114(3):373-7. PubMed ID: 25976709 [TBL] [Abstract][Full Text] [Related]
26. Effect of Different Implant-Abutment Connection Materials on the Fracture Resistance of Zirconia Abutments. AlAmar M; Alqahtani F J Oral Implantol; 2020 Apr; 46(2):88-92. PubMed ID: 31909678 [TBL] [Abstract][Full Text] [Related]
27. Fracture Resistance of CAD/CAM Monolithic Zirconia Crowns Supported by Titanium and Ti-Base Abutments: The Effect of Chewing Simulation and Thermocyclic Aging. Yavuz A; Büyükerkmen EB Int J Oral Maxillofac Implants; 2023; 38(2):328-333. PubMed ID: 37083917 [No Abstract] [Full Text] [Related]
28. Implant deformation and implant-abutment fracture resistance after standardized artificial aging: An in vitro study. Zhai Z; Nakano T; Chen Y; Watanabe S; Matsuoka T; Ishigaki S Clin Implant Dent Relat Res; 2023 Feb; 25(1):107-117. PubMed ID: 36415012 [TBL] [Abstract][Full Text] [Related]
29. Failure Load of Monolithic Lithium Disilicate Implant-Supported Single Crowns Bonded to Ti-base Abutments versus to Customized Ceramic Abutments after Fatigue. Spitznagel FA; Bonfante EA; Vollmer F; Gierthmuehlen PC J Prosthodont; 2022 Feb; 31(2):136-146. PubMed ID: 33870577 [TBL] [Abstract][Full Text] [Related]
30. In vitro assessment of three types of zirconia implant abutments under static load. Kim JS; Raigrodski AJ; Flinn BD; Rubenstein JE; Chung KH; Mancl LA J Prosthet Dent; 2013 Apr; 109(4):255-63. PubMed ID: 23566607 [TBL] [Abstract][Full Text] [Related]
31. Mechanical stability of angulated zirconia abutments supporting maxillary anterior single crowns on narrow-diameter implants. Ma R; Yu P; Zhang Y; Xie C; Tan X; Sun J; Yu H Clin Oral Investig; 2023 Jan; 27(1):221-233. PubMed ID: 36161530 [TBL] [Abstract][Full Text] [Related]
33. Failure resistance of single-implant crowns assembled from polyetheretherketone and lithium disilicate abutments and different crown materials after artificial aging. Elsayed A; Farrag G; Chaar MS; Yazigi C; Abdelnabi N; Kern M Int J Comput Dent; 2024 Oct; 27(3):273-280. PubMed ID: 37417447 [TBL] [Abstract][Full Text] [Related]
34. In vitro study of the influence of the type of connection on the fracture load of zirconia abutments with internal and external implant-abutment connections. Sailer I; Sailer T; Stawarczyk B; Jung RE; Hämmerle CH Int J Oral Maxillofac Implants; 2009; 24(5):850-8. PubMed ID: 19865625 [TBL] [Abstract][Full Text] [Related]
35. Fatigue fracture resistance of titanium and chairside CAD-CAM zirconia implant abutments supporting zirconia crowns: An in vitro comparative and finite element analysis study. Giner S; Bartolomé JF; Gomez-Cogolludo P; Castellote C; Pradíes G J Prosthet Dent; 2021 Mar; 125(3):503.e1-503.e9. PubMed ID: 33243472 [TBL] [Abstract][Full Text] [Related]
36. Fracture Resistance of Titanium, Zirconia, and Ceramic-Reinforced Polyetheretherketone Implant Abutments Supporting CAD/CAM Monolithic Lithium Disilicate Ceramic Crowns After Aging. Atsü SS; Aksan ME; Bulut AC Int J Oral Maxillofac Implants; 2019; 34(3):622–630. PubMed ID: 30716141 [TBL] [Abstract][Full Text] [Related]
37. Stiffness, strength, and failure modes of implant-supported monolithic lithium disilicate crowns: influence of titanium and zirconia abutments. Joda T; Bürki A; Bethge S; Brägger U; Zysset P Int J Oral Maxillofac Implants; 2015; 30(6):1272-9. PubMed ID: 26574852 [TBL] [Abstract][Full Text] [Related]
38. Influence of implant angulation on the fracture resistance of zirconia abutments. Thulasidas S; Givan DA; Lemons JE; O'Neal SJ; Ramp LC; Liu PR J Prosthodont; 2015 Feb; 24(2):127-35. PubMed ID: 24975560 [TBL] [Abstract][Full Text] [Related]
39. Monolithic hybrid abutment crowns: Influence of crown height, crown morphology and material on the implant-abutment complex. Graf T; Völler E; Erdelt K; Stimmelmayr M; Schubert O; Güth JF J Prosthodont Res; 2024 Oct; 68(4):606-614. PubMed ID: 38479887 [TBL] [Abstract][Full Text] [Related]
40. Static and dynamic stress analysis of different crown materials on a titanium base abutment in an implant-supported single crown: a 3D finite element analysis. Deste Gökay G; Oyar P; Gökçimen G; Durkan R BMC Oral Health; 2024 May; 24(1):545. PubMed ID: 38730391 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]