BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 35235674)

  • 1. Intracellular phosphate sensing and regulation of phosphate transport systems in plants.
    Wang Z; Kuo HF; Chiou TJ
    Plant Physiol; 2021 Dec; 187(4):2043-2055. PubMed ID: 35235674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of plant phosphate homeostasis by inositol pyrophosphates and the SPX domain.
    Jung JY; Ried MK; Hothorn M; Poirier Y
    Curr Opin Biotechnol; 2018 Feb; 49():156-162. PubMed ID: 28889038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inositol pyrophosphates promote the interaction of SPX domains with the coiled-coil motif of PHR transcription factors to regulate plant phosphate homeostasis.
    Ried MK; Wild R; Zhu J; Pipercevic J; Sturm K; Broger L; Harmel RK; Abriata LA; Hothorn LA; Fiedler D; Hiller S; Hothorn M
    Nat Commun; 2021 Jan; 12(1):384. PubMed ID: 33452263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inositol Pyrophosphate Pathways and Mechanisms: What Can We Learn from Plants?
    Cridland C; Gillaspy G
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32560343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of phosphate sensing in bone and mineral metabolism.
    Chande S; Bergwitz C
    Nat Rev Endocrinol; 2018 Nov; 14(11):637-655. PubMed ID: 30218014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The paralogous SPX3 and SPX5 genes redundantly modulate Pi homeostasis in rice.
    Shi J; Hu H; Zhang K; Zhang W; Yu Y; Wu Z; Wu P
    J Exp Bot; 2014 Mar; 65(3):859-70. PubMed ID: 24368504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner.
    Wang Z; Ruan W; Shi J; Zhang L; Xiang D; Yang C; Li C; Wu Z; Liu Y; Yu Y; Shou H; Mo X; Mao C; Wu P
    Proc Natl Acad Sci U S A; 2014 Oct; 111(41):14953-8. PubMed ID: 25271318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of XPR1-dependent cellular phosphate efflux by InsP
    Li X; Gu C; Hostachy S; Sahu S; Wittwer C; Jessen HJ; Fiedler D; Wang H; Shears SB
    Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3568-3574. PubMed ID: 32019887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic interactions between SPX proteins, the ubiquitination machinery, and signalling molecules for stress adaptation at a whole-plant level.
    Collins E; Shou H; Mao C; Whelan J; Jost R
    Biochem J; 2024 Mar; 481(5):363-385. PubMed ID: 38421035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rice SPX-Major Facility Superfamily3, a Vacuolar Phosphate Efflux Transporter, Is Involved in Maintaining Phosphate Homeostasis in Rice.
    Wang C; Yue W; Ying Y; Wang S; Secco D; Liu Y; Whelan J; Tyerman SD; Shou H
    Plant Physiol; 2015 Dec; 169(4):2822-31. PubMed ID: 26424157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana.
    Zhao L; Liu F; Xu W; Di C; Zhou S; Xue Y; Yu J; Su Z
    Plant Biotechnol J; 2009 Aug; 7(6):550-61. PubMed ID: 19508276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inositol Pyrophosphate InsP
    Dong J; Ma G; Sui L; Wei M; Satheesh V; Zhang R; Ge S; Li J; Zhang TE; Wittwer C; Jessen HJ; Zhang H; An GY; Chao DY; Liu D; Lei M
    Mol Plant; 2019 Nov; 12(11):1463-1473. PubMed ID: 31419530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A SPX domain vacuolar transporter links phosphate sensing to homeostasis in Arabidopsis.
    Luan M; Zhao F; Sun G; Xu M; Fu A; Lan W; Luan S
    Mol Plant; 2022 Oct; 15(10):1590-1601. PubMed ID: 36097639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cracking the code of plant central phosphate signaling.
    Jia X; Wang L; Nussaume L; Yi K
    Trends Plant Sci; 2023 Mar; 28(3):267-270. PubMed ID: 36588035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The inositol hexakisphosphate kinases IP6K1 and -2 regulate human cellular phosphate homeostasis, including XPR1-mediated phosphate export.
    Wilson MS; Jessen HJ; Saiardi A
    J Biol Chem; 2019 Jul; 294(30):11597-11608. PubMed ID: 31186349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatile signaling mechanisms of inositol pyrophosphates.
    Nguyen Trung M; Furkert D; Fiedler D
    Curr Opin Chem Biol; 2022 Oct; 70():102177. PubMed ID: 35780751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional characterization of the three Oryza sativa SPX-MFS proteins in maintaining phosphate homoeostasis.
    Guo R; Zhang Q; Ying Y; Liao W; Liu Y; Whelan J; Chuanzao M; Shou H
    Plant Cell Environ; 2023 Apr; 46(4):1264-1277. PubMed ID: 35909262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional responses to phosphate starvation in Brachypodium distachyon roots.
    Zhao P; Wang L; Yin H
    Plant Physiol Biochem; 2018 Jan; 122():113-120. PubMed ID: 29216498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2.
    Zhong Y; Wang Y; Guo J; Zhu X; Shi J; He Q; Liu Y; Wu Y; Zhang L; Lv Q; Mao C
    New Phytol; 2018 Jul; 219(1):135-148. PubMed ID: 29658119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves.
    Wang C; Huang W; Ying Y; Li S; Secco D; Tyerman S; Whelan J; Shou H
    New Phytol; 2012 Oct; 196(1):139-148. PubMed ID: 22803610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.