These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 35235674)

  • 41. Genome-wide identification and characterization of SPX-domain-containing protein gene family in
    Li C; You Q; Zhao P
    PeerJ; 2021; 9():e12689. PubMed ID: 35036163
    [TBL] [Abstract][Full Text] [Related]  

  • 42. XPR1: a regulator of cellular phosphate homeostasis rather than a Pi exporter.
    Burns D; Berlinguer-Palmini R; Werner A
    Pflugers Arch; 2024 May; 476(5):861-869. PubMed ID: 38507112
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The emerging role of GABA as a transport regulator and physiological signal.
    Xu B; Sai N; Gilliham M
    Plant Physiol; 2021 Dec; 187(4):2005-2016. PubMed ID: 35235673
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pi sensing and signalling: from prokaryotic to eukaryotic cells.
    Qi W; Baldwin SA; Muench SP; Baker A
    Biochem Soc Trans; 2016 Jun; 44(3):766-73. PubMed ID: 27284040
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation.
    Duan K; Yi K; Dang L; Huang H; Wu W; Wu P
    Plant J; 2008 Jun; 54(6):965-75. PubMed ID: 18315545
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants.
    Zhang Z; Liao H; Lucas WJ
    J Integr Plant Biol; 2014 Mar; 56(3):192-220. PubMed ID: 24417933
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The histone deacetylase HDA19 controls root cell elongation and modulates a subset of phosphate starvation responses in Arabidopsis.
    Chen CY; Wu K; Schmidt W
    Sci Rep; 2015 Oct; 5():15708. PubMed ID: 26508133
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Signaling network in sensing phosphate availability in plants.
    Chiou TJ; Lin SI
    Annu Rev Plant Biol; 2011; 62():185-206. PubMed ID: 21370979
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Eukaryotic Phosphate Homeostasis: The Inositol Pyrophosphate Perspective.
    Azevedo C; Saiardi A
    Trends Biochem Sci; 2017 Mar; 42(3):219-231. PubMed ID: 27876550
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phosphate transport and signaling.
    Raghothama KG
    Curr Opin Plant Biol; 2000 Jun; 3(3):182-7. PubMed ID: 10837272
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MicroRNA-mediated surveillance of phosphate transporters on the move.
    Liu TY; Lin WY; Huang TK; Chiou TJ
    Trends Plant Sci; 2014 Oct; 19(10):647-55. PubMed ID: 25001521
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Role for Inositol Pyrophosphates in the Metabolic Adaptations to Low Phosphate in
    Land ES; Cridland CA; Craige B; Dye A; Hildreth SB; Helm RF; Gillaspy GE; Perera IY
    Metabolites; 2021 Sep; 11(9):. PubMed ID: 34564416
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Novel signals in the regulation of Pi starvation responses in plants: facts and promises.
    Puga MI; Rojas-Triana M; de Lorenzo L; Leyva A; Rubio V; Paz-Ares J
    Curr Opin Plant Biol; 2017 Oct; 39():40-49. PubMed ID: 28587933
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Long-distance call from phosphate: systemic regulation of phosphate starvation responses.
    Lin WY; Huang TK; Leong SJ; Chiou TJ
    J Exp Bot; 2014 Apr; 65(7):1817-27. PubMed ID: 24368506
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ethylene's role in phosphate starvation signaling: more than just a root growth regulator.
    Nagarajan VK; Smith AP
    Plant Cell Physiol; 2012 Feb; 53(2):277-86. PubMed ID: 22199374
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular mechanisms of phosphate transport and signaling in higher plants.
    Wang F; Deng M; Xu J; Zhu X; Mao C
    Semin Cell Dev Biol; 2018 Feb; 74():114-122. PubMed ID: 28648582
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The transcriptional control of plant responses to phosphate limitation.
    Franco-Zorrilla JM; González E; Bustos R; Linhares F; Leyva A; Paz-Ares J
    J Exp Bot; 2004 Feb; 55(396):285-93. PubMed ID: 14718495
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genetic analysis of suppressor mutants of a pho84 disruptant in the search for genes involved in intracellular inorganic phosphate sensing in Saccharomyces cerevisiae.
    Sasano Y; Sakata T; Okusaki S; Sugiyama M; Kaneko Y; Harashima S
    Genes Genet Syst; 2018 Dec; 93(5):199-207. PubMed ID: 30449767
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Vacuolar SPX-MFS transporters are essential for phosphate adaptation in plants.
    Liu J; Fu S; Yang L; Luan M; Zhao F; Luan S; Lan W
    Plant Signal Behav; 2016 Aug; 11(8):e1213474. PubMed ID: 27467463
    [TBL] [Abstract][Full Text] [Related]  

  • 60. XPR1 Mediates the Pancreatic β-Cell Phosphate Flush.
    Barker CJ; Tessaro FHG; Ferreira SS; Simas R; Ayala TS; Köhler M; Rajasekaran SS; Martins JO; Darè E; Berggren PO
    Diabetes; 2021 Jan; 70(1):111-118. PubMed ID: 32826297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.