These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35235911)

  • 1. Inducing chiral superconductivity on honeycomb lattice systems.
    Alsharari AM; Ulloa SE
    J Phys Condens Matter; 2022 Mar; 34(20):. PubMed ID: 35235911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral Majorana fermions in two-dimensional square lattice antiferromagnet with proximity-induced superconductivity.
    Luo M
    J Phys Condens Matter; 2022 Oct; 34(48):. PubMed ID: 36220017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of robust topological quantum phases in graphene nanoribbons.
    Gröning O; Wang S; Yao X; Pignedoli CA; Borin Barin G; Daniels C; Cupo A; Meunier V; Feng X; Narita A; Müllen K; Ruffieux P; Fasel R
    Nature; 2018 Aug; 560(7717):209-213. PubMed ID: 30089919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass-like band-gap creation in superconducting topological insulator due to mixed singlet and triplet states.
    Khezerlou M; Goudarzi H
    J Phys Condens Matter; 2019 Oct; 31(41):415404. PubMed ID: 31317872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topological Crystalline Superconductivity in Locally Noncentrosymmetric Multilayer Superconductors.
    Yoshida T; Sigrist M; Yanase Y
    Phys Rev Lett; 2015 Jul; 115(2):027001. PubMed ID: 26207495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topological skyrmion phases of matter.
    Cook AM
    J Phys Condens Matter; 2023 Mar; 35(18):. PubMed ID: 36854186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral superconductivity in heavy-fermion metal UTe
    Jiao L; Howard S; Ran S; Wang Z; Rodriguez JO; Sigrist M; Wang Z; Butch NP; Madhavan V
    Nature; 2020 Mar; 579(7800):523-527. PubMed ID: 32214254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soliton Fractional Charges in Graphene Nanoribbon and Polyacetylene: Similarities and Differences.
    Yang SE
    Nanomaterials (Basel); 2019 Jun; 9(6):. PubMed ID: 31207969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chiral Topological Superconductivity in Superconductor-Obstructed Atomic Insulator-Ferromagnetic Insulator Heterostructures.
    Hu J; Yu F; Luo A; Pan XH; Zou J; Liu X; Xu G
    Phys Rev Lett; 2024 Jan; 132(3):036601. PubMed ID: 38307042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bound fermion states in pinned vortices in the surface states of a superconducting topological insulator.
    Deng H; Bonesteel N; Schlottmann P
    J Phys Condens Matter; 2020 Oct; 33(3):. PubMed ID: 33107443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust topological superconductivity in spin-orbit coupled systems at higher-order van Hove filling.
    Han X; Zhan J; Zhang FC; Hu J; Wu X
    Sci Bull (Beijing); 2024 Feb; 69(3):319-324. PubMed ID: 38105164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum Anomalous Hall Effects in Graphene from Proximity-Induced Uniform and Staggered Spin-Orbit and Exchange Coupling.
    Högl P; Frank T; Zollner K; Kochan D; Gmitra M; Fabian J
    Phys Rev Lett; 2020 Apr; 124(13):136403. PubMed ID: 32302179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Edge properties and Majorana fermions in the proposed chiral d-wave superconducting state of doped graphene.
    Black-Schaffer AM
    Phys Rev Lett; 2012 Nov; 109(19):197001. PubMed ID: 23215416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-Dimensional Topological Superconductivity with Antiferromagnetic Insulators.
    Lado JL; Sigrist M
    Phys Rev Lett; 2018 Jul; 121(3):037002. PubMed ID: 30085778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First- and Second-Order Topological Superconductivity and Temperature-Driven Topological Phase Transitions in the Extended Hubbard Model with Spin-Orbit Coupling.
    Kheirkhah M; Yan Z; Nagai Y; Marsiglio F
    Phys Rev Lett; 2020 Jul; 125(1):017001. PubMed ID: 32678655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superconductivity without Inversion and Time-Reversal Symmetries.
    Fischer MH; Sigrist M; Agterberg DF
    Phys Rev Lett; 2018 Oct; 121(15):157003. PubMed ID: 30362795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral-Flux-Phase-Based Topological Superconductivity in Kagome Systems with Mixed Edge Chiralities.
    Zeng J; Li Q; Yang X; Xu DH; Wang R
    Phys Rev Lett; 2023 Aug; 131(8):086601. PubMed ID: 37683163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of topological superconductivity in doped topological Dirac semimetals under symmetry-lowering lattice distortions.
    Cheon S; Lee KH; Chung SB; Yang BJ
    Sci Rep; 2021 Sep; 11(1):18539. PubMed ID: 34535739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable zero-energy Dirac and Luttinger nodes in a two-dimensional topological superconductor.
    Mays R; Nikolić P
    J Phys Condens Matter; 2023 Apr; 35(24):. PubMed ID: 36947881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for d-Wave Superconductivity in Single Layer FeSe/SrTiO
    Ge Z; Yan C; Zhang H; Agterberg D; Weinert M; Li L
    Nano Lett; 2019 Apr; 19(4):2497-2502. PubMed ID: 30916981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.