BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 35236126)

  • 41. Complementary information on bone ultrastructure from scanning small angle X-ray scattering and Fourier-transform infrared microspectroscopy.
    Camacho NP; Rinnerthaler S; Paschalis EP; Mendelsohn R; Boskey AL; Fratzl P
    Bone; 1999 Sep; 25(3):287-93. PubMed ID: 10495132
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fluorescence-Detected Mid-Infrared Photothermal Microscopy.
    Zhang Y; Zong H; Zong C; Tan Y; Zhang M; Zhan Y; Cheng JX
    J Am Chem Soc; 2021 Aug; 143(30):11490-11499. PubMed ID: 34264654
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues.
    Hanifi A; McCarthy H; Roberts S; Pleshko N
    PLoS One; 2013; 8(5):e64822. PubMed ID: 23717662
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Infrared imaging of calcified tissue in bone biopsies from adults with osteomalacia.
    Faibish D; Gomes A; Boivin G; Binderman I; Boskey A
    Bone; 2005 Jan; 36(1):6-12. PubMed ID: 15663997
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metasurface-enhanced mid-infrared spectrochemical imaging of tissues.
    Rosas S; Schoeller KA; Chang E; Mei H; Kats MA; Eliceiri KW; Zhao X; Yesilkoy F
    ArXiv; 2023 Apr; ():. PubMed ID: 36713257
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure of collagen adsorbed on a model implant surface resolved by polarization modulation infrared reflection-absorption spectroscopy.
    Brand I; Habecker F; Ahlers M; Klüner T
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():216-24. PubMed ID: 25498816
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simultaneous cancer and tumor microenvironment subtyping using confocal infrared microscopy for all-digital molecular histopathology.
    Mittal S; Yeh K; Leslie LS; Kenkel S; Kajdacsy-Balla A; Bhargava R
    Proc Natl Acad Sci U S A; 2018 Jun; 115(25):E5651-E5660. PubMed ID: 29866827
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fourier-Transform Atomic Force Microscope-Based Photothermal Infrared Spectroscopy with Broadband Source.
    Xie Q; Xu XG
    Nano Lett; 2022 Nov; 22(22):9174-9180. PubMed ID: 36368003
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rapid brain structure and tumour margin detection on whole frozen tissue sections by fast multiphotometric mid-infrared scanning.
    Kümmel T; van Marwick B; Rittel M; Ramallo Guevara C; Wühler F; Teumer T; Wängler B; Hopf C; Rädle M
    Sci Rep; 2021 May; 11(1):11307. PubMed ID: 34050224
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of a practical spatial-spectral analysis protocol for breast histopathology using Fourier transform infrared spectroscopic imaging.
    Pounder FN; Reddy RK; Bhargava R
    Faraday Discuss; 2016 Jun; 187():43-68. PubMed ID: 27095431
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polarized FT-IR microscopy of calcified turkey leg tendon.
    Gadaleta SJ; Landis WJ; Boskey AL; Mendelsohn R
    Connect Tissue Res; 1996; 34(3):203-11. PubMed ID: 9023049
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology.
    Petibois C; Déléris G
    Trends Biotechnol; 2006 Oct; 24(10):455-62. PubMed ID: 16935373
    [TBL] [Abstract][Full Text] [Related]  

  • 53. FTIR investigation of the secondary structure of type I collagen: New insight into the amide III band.
    Stani C; Vaccari L; Mitri E; Birarda G
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():118006. PubMed ID: 31927236
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chemical imaging of live cancer cells in the natural aqueous environment.
    Kuimova MK; Chan KL; Kazarian SG
    Appl Spectrosc; 2009 Feb; 63(2):164-71. PubMed ID: 19215645
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fourier transform infrared imaging spectroscopy investigations in the pathogenesis and repair of cartilage.
    Bi X; Yang X; Bostrom MP; Camacho NP
    Biochim Biophys Acta; 2006 Jul; 1758(7):934-41. PubMed ID: 16815242
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-Resolution Fourier Transform Infrared (FT-IR) Spectroscopic Imaging for Detection of Lung Structures and Cancer-Related Abnormalities in a Murine Model.
    Augustyniak K; Chrabaszcz K; Smeda M; Stojak M; Marzec KM; Malek K
    Appl Spectrosc; 2022 Apr; 76(4):439-450. PubMed ID: 34076540
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region.
    Carbonaro M; Nucara A
    Amino Acids; 2010 Mar; 38(3):679-90. PubMed ID: 19350368
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular imaging of paper cross sections by FT-IR spectroscopy and principal component analysis.
    Genest S; Salzer R; Steiner G
    Anal Bioanal Chem; 2013 Jun; 405(16):5421-30. PubMed ID: 23624951
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rapid differentiation of Listeria monocytogenes epidemic clones III and IV and their intact compared with heat-killed populations using Fourier transform infrared spectroscopy and chemometrics.
    Nyarko EB; Puzey KA; Donnelly CW
    J Food Sci; 2014 Jun; 79(6):M1189-96. PubMed ID: 24802119
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fast infrared chemical imaging with a quantum cascade laser.
    Yeh K; Kenkel S; Liu JN; Bhargava R
    Anal Chem; 2015 Jan; 87(1):485-93. PubMed ID: 25474546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.