These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 35236417)
1. Cobalamin cbiP mutant shows decreased tolerance to low temperature and copper stress in Listeria monocytogenes. Vásquez L; Parra A; Quesille-Villalobos AM; Gálvez G; Navarrete P; Latorre M; Toro M; González M; Reyes-Jara A Biol Res; 2022 Mar; 55(1):9. PubMed ID: 35236417 [TBL] [Abstract][Full Text] [Related]
2. The Combined Effect of Cold and Copper Stresses on the Proliferation and Transcriptional Response of Quesille-Villalobos AM; Parra A; Maza F; Navarrete P; González M; Latorre M; Toro M; Reyes-Jara A Front Microbiol; 2019; 10():612. PubMed ID: 30984140 [No Abstract] [Full Text] [Related]
3. The transcriptome of Listeria monocytogenes during co-cultivation with cheese rind bacteria suggests adaptation by induction of ethanolamine and 1,2-propanediol catabolism pathway genes. Anast JM; Schmitz-Esser S PLoS One; 2020; 15(7):e0233945. PubMed ID: 32701964 [TBL] [Abstract][Full Text] [Related]
4. Transcriptomic Analysis of the Adaptation of Listeria monocytogenes to Growth on Vacuum-Packed Cold Smoked Salmon. Tang S; Orsi RH; den Bakker HC; Wiedmann M; Boor KJ; Bergholz TM Appl Environ Microbiol; 2015 Oct; 81(19):6812-24. PubMed ID: 26209664 [TBL] [Abstract][Full Text] [Related]
5. Listeria monocytogenes grown at 7° C shows reduced acid survival and an altered transcriptional response to acid shock compared to L. monocytogenes grown at 37° C. Ivy RA; Wiedmann M; Boor KJ Appl Environ Microbiol; 2012 Jun; 78(11):3824-36. PubMed ID: 22447604 [TBL] [Abstract][Full Text] [Related]
6. The Cobalamin-Dependent Gene Cluster of Anast JM; Bobik TA; Schmitz-Esser S Front Microbiol; 2020; 11():601816. PubMed ID: 33240255 [TBL] [Abstract][Full Text] [Related]
7. Stress Survival Islet 2, Predominantly Present in Listeria monocytogenes Strains of Sequence Type 121, Is Involved in the Alkaline and Oxidative Stress Responses. Harter E; Wagner EM; Zaiser A; Halecker S; Wagner M; Rychli K Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28625982 [TBL] [Abstract][Full Text] [Related]
8. Molecular analysis of the role of osmolyte transporters opuCA and betL in Listeria monocytogenes after cold and freezing stress. Miladi H; Elabed H; Ben Slama R; Rhim A; Bakhrouf A Arch Microbiol; 2017 Mar; 199(2):259-265. PubMed ID: 27695911 [TBL] [Abstract][Full Text] [Related]
9. Contributions of two-component regulatory systems, alternative sigma factors, and negative regulators to Listeria monocytogenes cold adaptation and cold growth. Chan YC; Hu Y; Chaturongakul S; Files KD; Bowen BM; Boor KJ; Wiedmann M J Food Prot; 2008 Feb; 71(2):420-5. PubMed ID: 18326199 [TBL] [Abstract][Full Text] [Related]
10. Functional Genomics Identified Novel Genes Involved in Growth at Low Temperatures in Listeria monocytogenes. Wu Y; Pang X; Liu X; Wu Y; Zhang X Microbiol Spectr; 2022 Aug; 10(4):e0071022. PubMed ID: 35735974 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of cold growth and related gene transcription responses associated with Listeria monocytogenes strains of different origins. Arguedas-Villa C; Stephan R; Tasara T Food Microbiol; 2010 Aug; 27(5):653-60. PubMed ID: 20510784 [TBL] [Abstract][Full Text] [Related]
12. Strain Variability of Aalto-Araneda M; Pöntinen A; Pesonen M; Corander J; Markkula A; Tasara T; Stephan R; Korkeala H Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31900307 [No Abstract] [Full Text] [Related]
13. The htrA (degP) gene of Listeria monocytogenes 10403S is essential for optimal growth under stress conditions. Wonderling LD; Wilkinson BJ; Bayles DO Appl Environ Microbiol; 2004 Apr; 70(4):1935-43. PubMed ID: 15066783 [TBL] [Abstract][Full Text] [Related]
14. Two-Component-System Histidine Kinases Involved in Growth of Listeria monocytogenes EGD-e at Low Temperatures. Pöntinen A; Markkula A; Lindström M; Korkeala H Appl Environ Microbiol; 2015 Jun; 81(12):3994-4004. PubMed ID: 25841007 [TBL] [Abstract][Full Text] [Related]
15. Role of GlnR in Controlling Expression of Nitrogen Metabolism Genes in Biswas R; Sonenshein AL; Belitsky BR J Bacteriol; 2020 Sep; 202(19):. PubMed ID: 32690554 [No Abstract] [Full Text] [Related]
16. Sequential transition of the injury phenotype, temperature-dependent survival and transcriptional response in Listeria monocytogenes following lethal H Ochiai Y; Yamada F; Yoshikawa Y; Mochizuki M; Takano T; Hondo R; Ueda F Int J Food Microbiol; 2017 Oct; 259():52-58. PubMed ID: 28803156 [TBL] [Abstract][Full Text] [Related]
17. Construction of Listeria monocytogenes mutants with in-frame deletions in the phosphotransferase transport system (PTS) and analysis of their growth under stress conditions. Liu Y; Ceruso M; Jiang Y; Datta AR; Carter L; Strain E; Pepe T; Anastasi A; Fratamico P J Food Sci; 2013 Sep; 78(9):M1392-8. PubMed ID: 23909479 [TBL] [Abstract][Full Text] [Related]
18. Contributions of a LysR Transcriptional Regulator to Listeria monocytogenes Virulence and Identification of Its Regulons. Abdelhamed H; Ramachandran R; Narayanan L; Ozdemir O; Cooper A; Olivier AK; Karsi A; Lawrence ML J Bacteriol; 2020 Apr; 202(10):. PubMed ID: 32179628 [TBL] [Abstract][Full Text] [Related]
19. Strand specific RNA-sequencing and membrane lipid profiling reveals growth phase-dependent cold stress response mechanisms in Listeria monocytogenes. Hingston P; Chen J; Allen K; Truelstrup Hansen L; Wang S PLoS One; 2017; 12(6):e0180123. PubMed ID: 28662112 [TBL] [Abstract][Full Text] [Related]
20. Role of flhA and motA in growth of Listeria monocytogenes at low temperatures. Mattila M; Lindström M; Somervuo P; Markkula A; Korkeala H Int J Food Microbiol; 2011 Aug; 148(3):177-83. PubMed ID: 21683466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]