These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 35236868)
1. Pore-scale observations of natural hydrate-bearing sediments via pressure core sub-coring and micro-CT scanning. Lei L; Park T; Jarvis K; Pan L; Tepecik I; Zhao Y; Ge Z; Choi JH; Gai X; Galindo-Torres SA; Boswell R; Dai S; Seol Y Sci Rep; 2022 Mar; 12(1):3471. PubMed ID: 35236868 [TBL] [Abstract][Full Text] [Related]
2. Integration of triaxial testing and pore-scale visualization of methane hydrate bearing sediments. Seol Y; Lei L; Choi JH; Jarvis K; Hill D Rev Sci Instrum; 2019 Dec; 90(12):124504. PubMed ID: 31893836 [TBL] [Abstract][Full Text] [Related]
3. A testing assembly for combination measurements on gas hydrate-bearing sediments using x-ray computed tomography and low-field nuclear magnetic resonance. Zhang Z; Liu L; Li C; Liu C; Ning F; Liu Z; Meng Q Rev Sci Instrum; 2021 Aug; 92(8):085108. PubMed ID: 34470383 [TBL] [Abstract][Full Text] [Related]
4. Pressurized laboratory experiments show no stable carbon isotope fractionation of methane during gas hydrate dissolution and dissociation. Lapham LL; Wilson RM; Chanton JP Rapid Commun Mass Spectrom; 2012 Jan; 26(1):32-6. PubMed ID: 22215575 [TBL] [Abstract][Full Text] [Related]
5. Measuring temporal variability in pore-fluid chemistry to assess gas hydrate stability: development of a continuous pore-fluid array. Lapham LL; Chanton JP; Martens CS; Higley PD; Jannasch HW; Woolsey JR Environ Sci Technol; 2008 Oct; 42(19):7368-73. PubMed ID: 18939572 [TBL] [Abstract][Full Text] [Related]
6. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Inagaki F; Nunoura T; Nakagawa S; Teske A; Lever M; Lauer A; Suzuki M; Takai K; Delwiche M; Colwell FS; Nealson KH; Horikoshi K; D'Hondt S; Jørgensen BB Proc Natl Acad Sci U S A; 2006 Feb; 103(8):2815-20. PubMed ID: 16477011 [TBL] [Abstract][Full Text] [Related]
7. Insights into the climate-driven evolution of gas hydrate-bearing permafrost sediments: implications for prediction of environmental impacts and security of energy in cold regions. Vasheghani Farahani M; Hassanpouryouzband A; Yang J; Tohidi B RSC Adv; 2021 Apr; 11(24):14334-14346. PubMed ID: 35423992 [TBL] [Abstract][Full Text] [Related]
8. Dissociation behavior of CO2 hydrate in sediments during isochoric heating. Kwon TH; Kim HS; Cho GC Environ Sci Technol; 2008 Nov; 42(22):8571-7. PubMed ID: 19068850 [TBL] [Abstract][Full Text] [Related]
9. Geochemical Significance of Biomarkers in the Methane Hydrate-Bearing Sediments from the Shenhu Area, the South China Sea. Zhou QZ; Li Y; Chen F; Li SF; Dong SJ; Zhang FL; Xu XM; Wang JH Molecules; 2019 Jan; 24(3):. PubMed ID: 30696009 [TBL] [Abstract][Full Text] [Related]
10. Development of a coupled geophysical-geothermal scheme for quantification of hydrates in gas hydrate-bearing permafrost sediments. Vasheghani Farahani M; Hassanpouryouzband A; Yang J; Tohidi B Phys Chem Chem Phys; 2021 Nov; 23(42):24249-24264. PubMed ID: 34668900 [TBL] [Abstract][Full Text] [Related]
11. Pore-scale deformation characteristics of hydrate-bearing sediments with gas replacement. Huang L; Wu P; Wang Y; Song Y; Li Y Sci Total Environ; 2024 Dec; 954():176464. PubMed ID: 39317260 [TBL] [Abstract][Full Text] [Related]
12. Pore-network study of methane hydrate dissociation. Tsimpanogiannis IN; Lichtner PC Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056303. PubMed ID: 17279989 [TBL] [Abstract][Full Text] [Related]
13. Microbial diversity of two cold seep systems in gas hydrate-bearing sediments in the South China Sea. Cui H; Su X; Chen F; Holland M; Yang S; Liang J; Su P; Dong H; Hou W Mar Environ Res; 2019 Feb; 144():230-239. PubMed ID: 30732863 [TBL] [Abstract][Full Text] [Related]
14. Recent changes to the Gulf Stream causing widespread gas hydrate destabilization. Phrampus BJ; Hornbach MJ Nature; 2012 Oct; 490(7421):527-30. PubMed ID: 23099408 [TBL] [Abstract][Full Text] [Related]
15. Determination of pore-scale hydrate phase equilibria in sediments using lab-on-a-chip technology. Almenningen S; Flatlandsmo J; Kovscek AR; Ersland G; Fernø MA Lab Chip; 2017 Nov; 17(23):4070-4076. PubMed ID: 29067399 [TBL] [Abstract][Full Text] [Related]
16. Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. Lai X; Cao L; Tan H; Fang S; Huang Y; Zhou S ISME J; 2007 Dec; 1(8):756-62. PubMed ID: 18059498 [TBL] [Abstract][Full Text] [Related]
17. Life in the Anoxic Sub-Seafloor Environment: Linking Microbial Metabolism and Mega Reserves of Methane Hydrate. Honkalas V; Dabir A; Dhakephalkar PK Adv Biochem Eng Biotechnol; 2016; 156():235-262. PubMed ID: 26907550 [TBL] [Abstract][Full Text] [Related]
18. Sulfur organic compounds in bottom sediments of the eastern Gulf of Finland. Khoroshko LO; Petrova VN; Takhistov VV; Viktorovskii IV; Lahtiperä M; Paasivirta J Environ Sci Pollut Res Int; 2007 Sep; 14(6):366-76. PubMed ID: 17993219 [TBL] [Abstract][Full Text] [Related]
19. Activities and distribution of methanogenic and methane-oxidizing microbes in marine sediments from the Cascadia Margin. Yoshioka H; Maruyama A; Nakamura T; Higashi Y; Fuse H; Sakata S; Bartlett DH Geobiology; 2010 Jun; 8(3):223-33. PubMed ID: 20059557 [TBL] [Abstract][Full Text] [Related]
20. Experimental apparatus for resistivity measurement of gas hydrate-bearing sediment combined with x-ray computed tomography. Chen Q; Liu C; Wu N; Li C; Chen G; Sun J; Meng Q; Bu Q; Li Y Rev Sci Instrum; 2022 Sep; 93(9):094708. PubMed ID: 36182461 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]