These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35236878)

  • 1. A target-driven visual navigation method based on intrinsic motivation exploration and space topological cognition.
    Ruan X; Li P; Zhu X; Liu P
    Sci Rep; 2022 Mar; 12(1):3462. PubMed ID: 35236878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. End-to-End Autonomous Exploration with Deep Reinforcement Learning and Intrinsic Motivation.
    Ruan X; Li P; Zhu X; Yu H; Yu N
    Comput Intell Neurosci; 2021; 2021():9945044. PubMed ID: 34956359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of expected learning progress and perceptual novelty to curiosity-driven exploration.
    Poli F; Meyer M; Mars RB; Hunnius S
    Cognition; 2022 Aug; 225():105119. PubMed ID: 35421742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vision-Based Robot Navigation through Combining Unsupervised Learning and Hierarchical Reinforcement Learning.
    Zhou X; Bai T; Gao Y; Han Y
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30939807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LJIR: Learning Joint-Action Intrinsic Reward in cooperative multi-agent reinforcement learning.
    Chen Z; Luo B; Hu T; Xu X
    Neural Netw; 2023 Oct; 167():450-459. PubMed ID: 37683459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular deep reinforcement learning from reward and punishment for robot navigation.
    Wang J; Elfwing S; Uchibe E
    Neural Netw; 2021 Mar; 135():115-126. PubMed ID: 33383526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep imitation learning for 3D navigation tasks.
    Hussein A; Elyan E; Gaber MM; Jayne C
    Neural Comput Appl; 2018; 29(7):389-404. PubMed ID: 29576690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Curiosity-driven recommendation strategy for adaptive learning via deep reinforcement learning.
    Han R; Chen K; Tan C
    Br J Math Stat Psychol; 2020 Nov; 73(3):522-540. PubMed ID: 32080828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vision-Based Topological Mapping and Navigation With Self-Organizing Neural Networks.
    Hu Y; Subagdja B; Tan AH; Yin Q
    IEEE Trans Neural Netw Learn Syst; 2022 Dec; 33(12):7101-7113. PubMed ID: 34138715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SOVEREIGN: An autonomous neural system for incrementally learning planned action sequences to navigate towards a rewarded goal.
    Gnadt W; Grossberg S
    Neural Netw; 2008 Jun; 21(5):699-758. PubMed ID: 17996419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial and Temporal Hierarchy for Autonomous Navigation Using Active Inference in Minigrid Environment.
    de Tinguy D; Van de Maele T; Verbelen T; Dhoedt B
    Entropy (Basel); 2024 Jan; 26(1):. PubMed ID: 38248208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive hierarchical reinforcement learning for path-efficient mapless navigation with moving target.
    Li H; Luo B; Song W; Yang C
    Neural Netw; 2023 Aug; 165():677-688. PubMed ID: 37385022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple Self-Supervised Auxiliary Tasks for Target-Driven Visual Navigation Using Deep Reinforcement Learning.
    Zhang W; He L; Wang H; Yuan L; Xiao W
    Entropy (Basel); 2023 Jun; 25(7):. PubMed ID: 37509957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A self-learning cognitive architecture exploiting causality from rewards.
    Li H; Dou R; Keil A; Principe JC
    Neural Netw; 2022 Jun; 150():274-292. PubMed ID: 35339009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploration for Countering the Episodic Memory.
    Zhou R; Wang Y; Zhang X; Wang C
    Comput Intell Neurosci; 2022; 2022():7286186. PubMed ID: 35419049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strangeness-driven exploration in multi-agent reinforcement learning.
    Kim JB; Choi HB; Han YH
    Neural Netw; 2024 Apr; 172():106149. PubMed ID: 38306786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual novelty, curiosity, and intrinsic reward in machine learning and the brain.
    Jaegle A; Mehrpour V; Rust N
    Curr Opin Neurobiol; 2019 Oct; 58():167-174. PubMed ID: 31614282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Informative Path Planning via Normalized Utility in Unknown Environments Exploration.
    Yu T; Deng B; Gui J; Zhu X; Yao W
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inspection Robot Navigation Based on Improved TD3 Algorithm.
    Huang B; Xie J; Yan J
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning efficient haptic shape exploration with a rigid tactile sensor array.
    Fleer S; Moringen A; Klatzky RL; Ritter H
    PLoS One; 2020; 15(1):e0226880. PubMed ID: 31896135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.