These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 35237)

  • 1. The interference of plasmic degradation products of human crosslinked fibrin with clot formation.
    Budzynski AZ; Olexa SA; Brizuela BS
    Biochim Biophys Acta; 1979 May; 584(2):284-7. PubMed ID: 35237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of high molecular weight plasmic degradation products of human crosslinked fibrin.
    Olexa SA; Budzynski AZ; Marder VJ
    Biochim Biophys Acta; 1979 Jan; 576(1):39-50. PubMed ID: 153766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primary soluble plasmic degradation product of human cross-linked fibrin. Isolation and stoichiometry of the (DD)E complex.
    Olexa SA; Budzynski AZ
    Biochemistry; 1979 Mar; 18(6):991-5. PubMed ID: 154923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmic degradation of crosslinked fibrin. I. Structural analysis of the particulate clot and identification of new macromolecular-soluble complexes.
    Francis CW; Marder VJ; Martin SE
    Blood; 1980 Sep; 56(3):456-64. PubMed ID: 6447526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of primary polymerization sites in the D domain of human fibrinogen depends on intact conformation.
    Cierniewski CS; Kloczewiak M; Budzynski AZ
    J Biol Chem; 1986 Jul; 261(20):9116-21. PubMed ID: 3722190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding phenomena of isolated unique plasmic degradation products of human cross-linked fibrin.
    Olexa SA; Budzynski AZ
    J Biol Chem; 1979 Jun; 254(11):4925-32. PubMed ID: 155698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between complementary polymerization sites in the structural D and E domains of human fibrin.
    Ugarova TP; Budzynski AZ
    J Biol Chem; 1992 Jul; 267(19):13687-93. PubMed ID: 1618867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of complement-mediated opsonization and phagocytosis of Streptococcus pyogenes by D fragments of fibrinogen and fibrin bound to cell surface M protein.
    Whitnack E; Beachey EH
    J Exp Med; 1985 Dec; 162(6):1983-97. PubMed ID: 3906018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasma crosslinked fibrin polymers: quantitation based on tissue plasminogen activator conversion to D-dimer and measurement in normal and patients with acute thrombotic disorders.
    Kornberg A; Francis CW; Marder VJ
    Blood; 1992 Aug; 80(3):709-17. PubMed ID: 1386260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex-formation between the fibrin-derived plasmic fragments DD and E demonstrated by crossed immunoelectrophoresis.
    Gogstad GO; Brosstad F
    Thromb Res; 1983 Jun; 30(5):441-8. PubMed ID: 6225217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmic degradation of crosslinked fibrin. Characterization of new macromolecular soluble complexes and a model of their structure.
    Francis CW; Marder VJ; Barlow GH
    J Clin Invest; 1980 Nov; 66(5):1033-43. PubMed ID: 6448866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orientation of the carboxy-terminal regions of fibrin gamma chain dimers determined from the crosslinked products formed in mixtures of fibrin, fragment D, and factor XIIIa.
    Siebenlist KR; Meh DA; Wall JS; Hainfeld JF; Mosesson MW
    Thromb Haemost; 1995 Oct; 74(4):1113-9. PubMed ID: 8560422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A molecular model of plasmic degradation of crosslinked fibrin.
    Francis CW; Marder VJ
    Semin Thromb Hemost; 1982 Jan; 8(1):25-35. PubMed ID: 6460319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progressive exposure of E-neoantigen associated with degradation of crosslinked fibrin by plasmin in vitro.
    Stegnar M; Chen JP
    Thromb Haemost; 1984 Dec; 52(3):315-20. PubMed ID: 6241755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lymphocyte suppressive peptides from fibrinogen are derived predominantly from the A alpha chain.
    Plow EF; Edgington TS
    J Immunol; 1986 Sep; 137(6):1910-5. PubMed ID: 2943807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terminology for macromolecular plasmic derivatives of crosslinked fibrin.
    Francis CW; Alkjaersig N; Galanakis DK; Graeff H; Owen J; Gaffney P; Marder VJ
    Thromb Haemost; 1987 Feb; 57(1):110-1. PubMed ID: 2954259
    [No Abstract]   [Full Text] [Related]  

  • 17. Plasmic degradation of bovine fibrinogen and non-crosslinked fibrins in solution and in gel form.
    Inoue N; Moroi M; Yamasaki M
    Biochim Biophys Acta; 1975 Aug; 400(2):322-33. PubMed ID: 240417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Equilibrium system consisting of soluble forms of fibrin and the specific anticoagulant D fragment of the firbinogen molecule].
    Smekhova KO; Ugarova TP; Pozdniakova TM; Belitser VO
    Ukr Biokhim Zh; 1977; 49(6):5-11. PubMed ID: 22149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of crosslinking on the structure of solubilized fibrin degradation products in whole plasma.
    Carroll RC; Lockhart MS; Taylor FB
    J Lab Clin Med; 1984 May; 103(5):695-703. PubMed ID: 6232329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Like fibrin, (DD)E, the major degradation product of crosslinked fibrin, protects plasmin from inhibition by alpha2-antiplasmin.
    Lee AY; Fredenburgh JC; Stewart RJ; Rischke JA; Weitz JI
    Thromb Haemost; 2001 Mar; 85(3):502-8. PubMed ID: 11307822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.