These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 35237563)

  • 1. Fibrous Aerogels for Solar Vapor Generation.
    Xu C; Zhang J; Shahriari-Khalaji M; Gao M; Yu X; Ye C; Cheng Y; Zhu M
    Front Chem; 2022; 10():843070. PubMed ID: 35237563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene and Rice-Straw-Fiber-Based 3D Photothermal Aerogels for Highly Efficient Solar Evaporation.
    Storer DP; Phelps JL; Wu X; Owens G; Khan NI; Xu H
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15279-15287. PubMed ID: 32149489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibrous Aerogels with Tunable Superwettability for High-Performance Solar-Driven Interfacial Evaporation.
    Xu C; Gao M; Yu X; Zhang J; Cheng Y; Zhu M
    Nanomicro Lett; 2023 Mar; 15(1):64. PubMed ID: 36899127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Janus structure MXene/cellulose nanofibers/luffa aerogels with superb mechanical strength and high-efficiency desalination for solar-driven interfacial evaporation.
    Wang PL; Zhang W; Yuan Q; Mai T; Qi MY; Ma MG
    J Colloid Interface Sci; 2023 Sep; 645():306-318. PubMed ID: 37150004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanofibrous Aerogels with Vertically Aligned Microchannels for Efficient Solar Steam Generation.
    Mei T; Chen J; Zhao Q; Wang D
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42686-42695. PubMed ID: 32838517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gel-Emulsion-Templated Polymeric Aerogels for Water Treatment by Organic Liquid Removal and Solar Vapor Generation.
    Liu J; Yang H; Liu K; Miao R; Fang Y
    ChemSusChem; 2020 Feb; 13(4):749-755. PubMed ID: 31863570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper Sulfide-Based Plasmonic Photothermal Membrane for High-Efficiency Solar Vapor Generation.
    Tao F; Zhang Y; Yin K; Cao S; Chang X; Lei Y; Wang DS; Fan R; Dong L; Yin Y; Chen X
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35154-35163. PubMed ID: 30277387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cost Effective Photothermal Materials Selection for Direct Solar-Driven Evaporation.
    Eltigani H; Chobaomsup V; Boonyongmaneerat Y
    ACS Omega; 2024 Jul; 9(26):27872-27887. PubMed ID: 38973912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring Graphene Oxide-Based Aerogels for Efficient Solar Steam Generation under One Sun.
    Hu X; Xu W; Zhou L; Tan Y; Wang Y; Zhu S; Zhu J
    Adv Mater; 2017 Feb; 29(5):. PubMed ID: 27885728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mushrooms as Efficient Solar Steam-Generation Devices.
    Xu N; Hu X; Xu W; Li X; Zhou L; Zhu S; Zhu J
    Adv Mater; 2017 Jul; 29(28):. PubMed ID: 28520092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogels as an Emerging Material Platform for Solar Water Purification.
    Zhou X; Guo Y; Zhao F; Yu G
    Acc Chem Res; 2019 Nov; 52(11):3244-3253. PubMed ID: 31633912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophobic Modification of Pectin Aerogels via Chemical Vapor Deposition.
    Effraimopoulou E; Jaxel J; Budtova T; Rigacci A
    Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38931978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and application of macroscopic nanowire aerogels.
    Niu Y; Li F; Zhao W; Cheng W
    Nanoscale; 2021 Apr; 13(16):7430-7446. PubMed ID: 33928971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Thermally Insulated and Superhydrophilic Corn Straw for Efficient Solar Vapor Generation.
    Zhang H; Li L; Jiang B; Zhang Q; Ma J; Tang D; Song Y
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16503-16511. PubMed ID: 32182429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modified Hollow Glass Microspheres/Reduced Graphene Oxide Composite Aerogels with Low Thermal Conductivity for Highly Efficient Solar Steam Generation.
    Wang S; Niu Y; Wang C; Wang F; Zhu Z; Sun H; Liang W; Li A
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42803-42812. PubMed ID: 34460228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber-Based, Double-Sided, Reduced Graphene Oxide Films for Efficient Solar Vapor Generation.
    Guo A; Ming X; Fu Y; Wang G; Wang X
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29958-29964. PubMed ID: 28816435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustainable Solar Evaporation while Salt Accumulation.
    Bian Y; Tang K; Tian L; Zhao L; Zhu S; Lu H; Yang Y; Ye J; Gu S
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):4935-4942. PubMed ID: 33432803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer/Carbon-Based Hybrid Aerogels: Preparation, Properties and Applications.
    Zuo L; Zhang Y; Zhang L; Miao YE; Fan W; Liu T
    Materials (Basel); 2015 Oct; 8(10):6806-6848. PubMed ID: 28793602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Preparation of Three-Dimensional MoS
    Wang Q; Guo Q; Jia F; Li Y; Song S
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32673-32680. PubMed ID: 32589023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in Solar-Driven Hygroscopic Water Harvesting.
    Zhuang S; Qi H; Wang X; Li X; Liu K; Liu J; Zhang H
    Glob Chall; 2021 Jan; 5(1):2000085. PubMed ID: 33437528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.