These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 35237586)

  • 1. Single-Metal Hybrid Micromotor.
    Li D; Zheng Y; Zhang Z; Zhang Q; Huang X; Dong R; Cai Y; Wang L
    Front Bioeng Biotechnol; 2022; 10():844328. PubMed ID: 35237586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose-Fueled Micromotors with Highly Efficient Visible-Light Photocatalytic Propulsion.
    Wang Q; Dong R; Wang C; Xu S; Chen D; Liang Y; Ren B; Gao W; Cai Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6201-6207. PubMed ID: 30672287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refillable Fuel-Loading Microshell Motors for Persistent Motion in a Fuel-Free Environment.
    Wang D; Chen C; Sun J; Ao H; Xiao W; Ju H; Wu J
    ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35666913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical/Light-Powered Hybrid Micromotors with "On-the-Fly" Optical Brakes.
    Chen C; Tang S; Teymourian H; Karshalev E; Zhang F; Li J; Mou F; Liang Y; Guan J; Wang J
    Angew Chem Int Ed Engl; 2018 Jul; 57(27):8110-8114. PubMed ID: 29737003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magneto-Acoustic Hybrid Nanomotor.
    Li J; Li T; Xu T; Kiristi M; Liu W; Wu Z; Wang J
    Nano Lett; 2015 Jul; 15(7):4814-21. PubMed ID: 26077325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two Forces Are Better than One: Combining Chemical and Acoustic Propulsion for Enhanced Micromotor Functionality.
    Ren L; Wang W; Mallouk TE
    Acc Chem Res; 2018 Sep; 51(9):1948-1956. PubMed ID: 30079719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vapor-Driven Propulsion of Catalytic Micromotors.
    Dong R; Li J; Rozen I; Ezhilan B; Xu T; Christianson C; Gao W; Saintillan D; Ren B; Wang J
    Sci Rep; 2015 Aug; 5():13226. PubMed ID: 26285032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Enzyme Quantity and Distribution on the Self-Propulsion of Non-Janus Urease-Powered Micromotors.
    Patiño T; Feiner-Gracia N; Arqué X; Miguel-López A; Jannasch A; Stumpp T; Schäffer E; Albertazzi L; Sánchez S
    J Am Chem Soc; 2018 Jun; 140(25):7896-7903. PubMed ID: 29786426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dipole-Moment Induced Phototaxis and Fuel-Free Propulsion of ZnO/Pt Janus Micromotors.
    He X; Jiang H; Li J; Ma Y; Fu B; Hu C
    Small; 2021 Aug; 17(31):e2101388. PubMed ID: 34173337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ZnO-based microrockets with light-enhanced propulsion.
    Dong R; Wang C; Wang Q; Pei A; She X; Zhang Y; Cai Y
    Nanoscale; 2017 Oct; 9(39):15027-15032. PubMed ID: 28967007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustically propelled nanoshells.
    Soto F; Wagner GL; Garcia-Gradilla V; Gillespie KT; Lakshmipathy DR; Karshalev E; Angell C; Chen Y; Wang J
    Nanoscale; 2016 Oct; 8(41):17788-17793. PubMed ID: 27714225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photochemically Activated Motors: From Electrokinetic to Diffusion Motion Control.
    Zhang K; Fraxedas J; Sepulveda B; Esplandiu MJ
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44948-44953. PubMed ID: 29199814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-Mode-Driven Micromotor Based on Foam-like Carbon Nitride and Fe
    Feng K; Gong J; Qu J; Niu R
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44271-44281. PubMed ID: 36150032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visible-Light-Driven Water-Fueled Ecofriendly Micromotors Based on Iron Phthalocyanine for Highly Efficient Organic Pollutant Degradation.
    Tong J; Wang D; Wang D; Xu F; Duan R; Zhang D; Fan J; Dong B
    Langmuir; 2020 Jun; 36(25):6930-6937. PubMed ID: 31604011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic micromotors as self-stirring microreactors for efficient dual-mode colorimetric detection.
    Zhao H; Zeng H; Chen T; Huang X; Cai Y; Dong R
    J Colloid Interface Sci; 2023 Aug; 643():196-204. PubMed ID: 37058894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analyte Sensing with Catalytic Micromotors.
    Popescu MN; Gáspár S
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotropic Hedgehog-Shaped-TiO
    Jiang H; He X; Ma Y; Fu B; Xu X; Subramanian B; Hu C
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5406-5417. PubMed ID: 33475348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fuel-Free Synthetic Micro-/Nanomachines.
    Xu T; Gao W; Xu LP; Zhang X; Wang S
    Adv Mater; 2017 Mar; 29(9):. PubMed ID: 28026067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence Detection of miRNA-21 Using Au/Pt Bimetallic Tubular Micromotors Driven by Chemical and Surface Acoustic Wave Forces.
    Celik Cogal G; Das PK; Yurdabak Karaca G; Bhethanabotla VR; Uygun Oksuz A
    ACS Appl Bio Mater; 2021 Nov; 4(11):7932-7941. PubMed ID: 35006774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiwavelength Phototactic Micromotor with Controllable Swarming Motion for "Chemistry-on-the-Fly".
    Hu Y; Liu W; Sun Y
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41495-41505. PubMed ID: 32825803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.