These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 35237586)

  • 41. Dye-Enhanced Self-Electrophoretic Propulsion of Light-Driven TiO
    Wu Y; Dong R; Zhang Q; Ren B
    Nanomicro Lett; 2017; 9(3):30. PubMed ID: 30393725
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: model and experiment.
    Li L; Wang J; Li T; Song W; Zhang G
    Soft Matter; 2014 Oct; 10(38):7511-8. PubMed ID: 25080889
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Manganese Oxide Based Catalytic Micromotors: Effect of Polymorphism on Motion.
    Safdar M; Minh TD; Kinnunen N; Jänis J
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32624-32629. PubMed ID: 27933845
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bubble-Propelled Jellyfish-like Micromotors for DNA Sensing.
    Zhang X; Chen C; Wu J; Ju H
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13581-13588. PubMed ID: 30888785
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fish-Scale-Like Intercalated Metal Oxide-Based Micromotors as Efficient Water Remediation Agents.
    Liu W; Ge H; Chen X; Lu X; Gu Z; Li J; Wang J
    ACS Appl Mater Interfaces; 2019 May; 11(17):16164-16173. PubMed ID: 30957479
    [TBL] [Abstract][Full Text] [Related]  

  • 46. One-dimensional micro/nanomotors for biomedicine: delivery, sensing and surgery.
    Guo J; Lin Y
    Biomater Transl; 2020; 1(1):18-32. PubMed ID: 35837656
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Acoustic Propulsion of Vitamin C Loaded Teabots for Targeted Oxidative Stress and Amyloid Therapeutics.
    Bhuyan T; Dutta D; Bhattacharjee M; Singh AK; Ghosh SS; Bandyopadhyay D
    ACS Appl Bio Mater; 2019 Oct; 2(10):4571-4582. PubMed ID: 35021416
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water.
    Dong R; Hu Y; Wu Y; Gao W; Ren B; Wang Q; Cai Y
    J Am Chem Soc; 2017 Feb; 139(5):1722-1725. PubMed ID: 28117995
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unraveling the Operational Mechanisms of Chemically Propelled Motors with Micropumps.
    Esplandiu MJ; Zhang K; Fraxedas J; Sepulveda B; Reguera D
    Acc Chem Res; 2018 Sep; 51(9):1921-1930. PubMed ID: 30192137
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Artificial micromotors in the mouse's stomach: a step toward in vivo use of synthetic motors.
    Gao W; Dong R; Thamphiwatana S; Li J; Gao W; Zhang L; Wang J
    ACS Nano; 2015 Jan; 9(1):117-23. PubMed ID: 25549040
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Micromotors for "Chemistry-on-the-Fly".
    Karshalev E; Esteban-Fernández de Ávila B; Wang J
    J Am Chem Soc; 2018 Mar; 140(11):3810-3820. PubMed ID: 29470916
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Direct measurement of self-diffusiophoretic force generated by active colloids of different patch coverage using optical tweezers.
    Raj T; Roy S; Kumar A; Roy B; Mani E; Sudhakar S
    J Colloid Interface Sci; 2025 Jan; 677(Pt B):986-996. PubMed ID: 39178677
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nano/Micromotors for Cancer Diagnosis and Therapy: Innovative Designs to Improve Biocompatibility.
    Zheng J; Huang R; Lin Z; Chen S; Yuan K
    Pharmaceutics; 2023 Dec; 16(1):. PubMed ID: 38258055
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Micromotor That Carries Its Own Fuel Internally.
    Dong RY; Zhang Y; Lou K; Granick S
    Langmuir; 2020 Jul; 36(26):7701-7705. PubMed ID: 32571028
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultrasonic Steering Wheels: Turning Micromotors by Localized Acoustic Microstreaming.
    Gao Q; Yang Z; Zhu R; Wang J; Xu P; Liu J; Chen X; Yan Z; Peng Y; Wang Y; Zheng H; Cai F; Wang W
    ACS Nano; 2023 Mar; 17(5):4729-4739. PubMed ID: 36815761
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Delayed ignition and propulsion of catalytic microrockets based on fuel-induced chemical dealloying of the inner alloy layer.
    Jodra A; Soto F; Lopez-Ramirez MA; Escarpa A; Wang J
    Chem Commun (Camb); 2016 Sep; 52(79):11838-11841. PubMed ID: 27711448
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Application of self-propelled micro-/nanomotors in active targeted drug delivery].
    Liu M; Tu B; Liu L; Chen B; Tu Y
    Nan Fang Yi Ke Da Xue Xue Bao; 2020 Mar; 40(3):445-452. PubMed ID: 32376586
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Novel catalytic micromotor of porous zeolitic imidazolate framework-67 for precise drug delivery.
    Wang L; Zhu H; Shi Y; Ge Y; Feng X; Liu R; Li Y; Ma Y; Wang L
    Nanoscale; 2018 Jun; 10(24):11384-11391. PubMed ID: 29877544
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enzymatic/Magnetic Hybrid Micromotors for Synergistic Anticancer Therapy.
    Wu J; Ma S; Li M; Hu X; Jiao N; Tung S; Liu L
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31514-31526. PubMed ID: 34213305
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Motion control at the nanoscale.
    Wang J; Manesh KM
    Small; 2010 Feb; 6(3):338-45. PubMed ID: 20013944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.