These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35237669)

  • 1. Exploratory State Representation Learning.
    Merckling A; Perrin-Gilbert N; Coninx A; Doncieux S
    Front Robot AI; 2022; 9():762051. PubMed ID: 35237669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual Pretraining via Contrastive Predictive Model for Pixel-Based Reinforcement Learning.
    Luu TM; Vu T; Nguyen T; Yoo CD
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Representation learning for continuous action spaces is beneficial for efficient policy learning.
    Zhao T; Wang Y; Sun W; Chen Y; Niu G; Sugiyama M
    Neural Netw; 2023 Feb; 159():137-152. PubMed ID: 36566604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vision-Based Robot Navigation through Combining Unsupervised Learning and Hierarchical Reinforcement Learning.
    Zhou X; Bai T; Gao Y; Han Y
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30939807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective particle attention: Rapidly and flexibly selecting features for deep reinforcement learning.
    Blakeman S; Mareschal D
    Neural Netw; 2022 Jun; 150():408-421. PubMed ID: 35358888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. STACoRe: Spatio-temporal and action-based contrastive representations for reinforcement learning in Atari.
    Lee YJ; Kim J; Kwak M; Park YJ; Kim SB
    Neural Netw; 2023 Mar; 160():1-11. PubMed ID: 36587439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-based policy gradients with parameter-based exploration by least-squares conditional density estimation.
    Tangkaratt V; Mori S; Zhao T; Morimoto J; Sugiyama M
    Neural Netw; 2014 Sep; 57():128-40. PubMed ID: 24995917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence of belief-like representations through reinforcement learning.
    Hennig JA; Pinto SAR; Yamaguchi T; Linderman SW; Uchida N; Gershman SJ
    bioRxiv; 2023 Apr; ():. PubMed ID: 37066383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meta-Reinforcement Learning in Non-Stationary and Dynamic Environments.
    Bing Z; Lerch D; Huang K; Knoll A
    IEEE Trans Pattern Anal Mach Intell; 2023 Mar; 45(3):3476-3491. PubMed ID: 35737617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovering diverse solutions in deep reinforcement learning by maximizing state-action-based mutual information.
    Osa T; Tangkaratt V; Sugiyama M
    Neural Netw; 2022 Aug; 152():90-104. PubMed ID: 35523085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Maximum Divergence Approach to Optimal Policy in Deep Reinforcement Learning.
    Yang Z; Qu H; Fu M; Hu W; Zhao Y
    IEEE Trans Cybern; 2023 Mar; 53(3):1499-1510. PubMed ID: 34478393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reward-predictive representations generalize across tasks in reinforcement learning.
    Lehnert L; Littman ML; Frank MJ
    PLoS Comput Biol; 2020 Oct; 16(10):e1008317. PubMed ID: 33057329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Context meta-reinforcement learning via neuromodulation.
    Ben-Iwhiwhu E; Dick J; Ketz NA; Pilly PK; Soltoggio A
    Neural Netw; 2022 Aug; 152():70-79. PubMed ID: 35512540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forward and inverse reinforcement learning sharing network weights and hyperparameters.
    Uchibe E; Doya K
    Neural Netw; 2021 Dec; 144():138-153. PubMed ID: 34492548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical clustering optimizes the tradeoff between compositionality and expressivity of task structures for flexible reinforcement learning.
    Liu RG; Frank MJ
    Artif Intell; 2022 Nov; 312():. PubMed ID: 36711165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leveraging Predictions of Task-Related Latents for Interactive Visual Navigation.
    Shen J; Yuan L; Lu Y; Lyu S
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; PP():. PubMed ID: 38039173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergence of belief-like representations through reinforcement learning.
    Hennig JA; Romero Pinto SA; Yamaguchi T; Linderman SW; Uchida N; Gershman SJ
    PLoS Comput Biol; 2023 Sep; 19(9):e1011067. PubMed ID: 37695776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Open-Ended Learning: A Conceptual Framework Based on Representational Redescription.
    Doncieux S; Filliat D; Díaz-Rodríguez N; Hospedales T; Duro R; Coninx A; Roijers DM; Girard B; Perrin N; Sigaud O
    Front Neurorobot; 2018; 12():59. PubMed ID: 30319388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scalable Scheduling of Semiconductor Packaging Facilities Using Deep Reinforcement Learning.
    Park IB; Park J
    IEEE Trans Cybern; 2023 Jun; 53(6):3518-3531. PubMed ID: 34860658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. State-Temporal Compression in Reinforcement Learning With the Reward-Restricted Geodesic Metric.
    Guo S; Yan Q; Su X; Hu X; Chen F
    IEEE Trans Pattern Anal Mach Intell; 2022 Sep; 44(9):5572-5589. PubMed ID: 33764874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.