These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35237669)

  • 21. Learning Structures: Predictive Representations, Replay, and Generalization.
    Momennejad I
    Curr Opin Behav Sci; 2020 Apr; 32():155-166. PubMed ID: 35419465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Representation learning in the artificial and biological neural networks underlying sensorimotor integration.
    Suhaimi A; Lim AWH; Chia XW; Li C; Makino H
    Sci Adv; 2022 Jun; 8(22):eabn0984. PubMed ID: 35658033
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Harnessing Large-Scale Herbarium Image Datasets Through Representation Learning.
    Walker BE; Tucker A; Nicolson N
    Front Plant Sci; 2021; 12():806407. PubMed ID: 35095977
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Variational Dynamic for Self-Supervised Exploration in Deep Reinforcement Learning.
    Bai C; Liu P; Liu K; Wang L; Zhao Y; Han L; Wang Z
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):4776-4790. PubMed ID: 34851835
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Learning shared, discriminative, and compact representations for visual recognition.
    Lobel H; Vidal R; Soto A
    IEEE Trans Pattern Anal Mach Intell; 2015 Nov; 37(11):2218-31. PubMed ID: 26440263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reinforcement Learning With Low-Complexity Liquid State Machines.
    Ponghiran W; Srinivasan G; Roy K
    Front Neurosci; 2019; 13():883. PubMed ID: 31507361
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MOO-MDP: An Object-Oriented Representation for Cooperative Multiagent Reinforcement Learning.
    Da Silva FL; Glatt R; Costa AHR
    IEEE Trans Cybern; 2019 Feb; 49(2):567-579. PubMed ID: 29990289
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multimodal Representation Learning via Maximization of Local Mutual Information.
    Liao R; Moyer D; Cha M; Quigley K; Berkowitz S; Horng S; Golland P; Wells WM
    Med Image Comput Comput Assist Interv; 2021; 12902():273-283. PubMed ID: 36282980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Action-driven contrastive representation for reinforcement learning.
    Kim M; Rho K; Kim YD; Jung K
    PLoS One; 2022; 17(3):e0265456. PubMed ID: 35303031
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reinforcement learning using a continuous time actor-critic framework with spiking neurons.
    Frémaux N; Sprekeler H; Gerstner W
    PLoS Comput Biol; 2013 Apr; 9(4):e1003024. PubMed ID: 23592970
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Learning Intuitive Physics and One-Shot Imitation Using State-Action-Prediction Self-Organizing Maps.
    Stetter M; Lang EW
    Comput Intell Neurosci; 2021; 2021():5590445. PubMed ID: 34804145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Joint Learning of Multiple Latent Domains and Deep Representations for Domain Adaptation.
    Wu X; Chen J; Yu F; Yao M; Luo J
    IEEE Trans Cybern; 2021 May; 51(5):2676-2687. PubMed ID: 31251207
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Manifold-Based Reinforcement Learning via Locally Linear Reconstruction.
    Xu X; Huang Z; Zuo L; He H
    IEEE Trans Neural Netw Learn Syst; 2017 Apr; 28(4):934-947. PubMed ID: 26829806
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reinforcement Learning Tracking Control for Robotic Manipulator With Kernel-Based Dynamic Model.
    Hu Y; Wang W; Liu H; Liu L
    IEEE Trans Neural Netw Learn Syst; 2020 Sep; 31(9):3570-3578. PubMed ID: 31689218
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning Generative State Space Models for Active Inference.
    Çatal O; Wauthier S; De Boom C; Verbelen T; Dhoedt B
    Front Comput Neurosci; 2020; 14():574372. PubMed ID: 33304260
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Feature Control as Intrinsic Motivation for Hierarchical Reinforcement Learning.
    Dilokthanakul N; Kaplanis C; Pawlowski N; Shanahan M
    IEEE Trans Neural Netw Learn Syst; 2019 Nov; 30(11):3409-3418. PubMed ID: 30714933
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Weak Human Preference Supervision for Deep Reinforcement Learning.
    Cao Z; Wong K; Lin CT
    IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5369-5378. PubMed ID: 34101604
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Model-based reinforcement learning with dimension reduction.
    Tangkaratt V; Morimoto J; Sugiyama M
    Neural Netw; 2016 Dec; 84():1-16. PubMed ID: 27639719
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation.
    Enguehard J; O'Halloran P; Gholipour A
    IEEE Access; 2019; 7():11093-11104. PubMed ID: 31588387
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning.
    Pinheiro GA; Da Silva JLF; Quiles MG
    J Chem Inf Model; 2022 Sep; 62(17):3948-3960. PubMed ID: 36044610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.