These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35237777)

  • 1. On-demand deterministic release of particles and cells using stretchable microfluidics.
    Fallahi H; Cha H; Adelnia H; Dai Y; Ta HT; Yadav S; Zhang J; Nguyen NT
    Nanoscale Horiz; 2022 Mar; 7(4):414-424. PubMed ID: 35237777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stretchable Inertial Microfluidic Device for Tunable Particle Separation.
    Fallahi H; Zhang J; Nicholls J; Phan HP; Nguyen NT
    Anal Chem; 2020 Sep; 92(18):12473-12480. PubMed ID: 32786464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-tuneable isolation of cancer cells using stretchable inertial microfluidics.
    Fallahi H; Yadav S; Phan HP; Ta H; Zhang J; Nguyen NT
    Lab Chip; 2021 May; 21(10):2008-2018. PubMed ID: 34008666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silk Particle Production Based on silk/PVA Phase Separation Using a Microfabricated Co-flow Device.
    Montoya NV; Peterson R; Ornell KJ; Albrecht DR; Coburn JM
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32079339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle/cell separation using sheath-free deterministic lateral displacement arrays with inertially focused single straight input.
    Tottori N; Nisisako T
    Lab Chip; 2020 Jun; 20(11):1999-2008. PubMed ID: 32373868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable Synthesis of Multicompartmental Particles Using 3D Microfluidics.
    Wu Z; Zheng Y; Lin L; Mao S; Li Z; Lin JM
    Angew Chem Int Ed Engl; 2020 Feb; 59(6):2225-2229. PubMed ID: 31696588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and experimental investigation of a novel spiral microfluidic chip to separate wide size range of micro-particles aimed at cell separation.
    Tabatabaei SA; Zabetian Targhi M
    Proc Inst Mech Eng H; 2021 Nov; 235(11):1315-1328. PubMed ID: 34218740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sheathless size-based acoustic particle separation.
    Guldiken R; Jo MC; Gallant ND; Demirci U; Zhe J
    Sensors (Basel); 2012; 12(1):905-22. PubMed ID: 22368502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of critical particle size in asymmetrical deterministic lateral displacement.
    Rezaei B; Moghimi Zand M; Javidi R
    J Chromatogr A; 2021 Jul; 1649():462216. PubMed ID: 34034107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic on-demand engineering of longitudinal dynamic self-assembly of particles.
    Liu L; Xu H; Xiu H; Xiang N; Ni Z
    Analyst; 2020 Aug; 145(15):5128-5133. PubMed ID: 32573585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A weak shear stress microfluidic device based on Viscoelastic Stagnant Region (VSR) for biosensitive particle capture.
    Lu Y; Tan W; Shi X; Liu M; Zhu G
    Talanta; 2021 Oct; 233():122550. PubMed ID: 34215053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of nanoparticle delivery in microcirculation using a microfluidic device.
    Thomas A; Tan J; Liu Y
    Microvasc Res; 2014 Jul; 94():17-27. PubMed ID: 24788074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of viscoelastic focusing of particles and cells in a zigzag microchannel.
    Yuan D; Yadav S; Ta HT; Fallahi H; An H; Kashaninejad N; Ooi CH; Nguyen NT; Zhang J
    Electrophoresis; 2021 Nov; 42(21-22):2230-2237. PubMed ID: 34396540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Performance and Tunability of a Co-Flow Inertial Microfluidic Device.
    Bogseth A; Zhou J; Papautsky I
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32164264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free separation of nanoscale particles by an ultrahigh gradient magnetic field in a microfluidic device.
    Zeng L; Chen X; Du J; Yu Z; Zhang R; Zhang Y; Yang H
    Nanoscale; 2021 Feb; 13(7):4029-4037. PubMed ID: 33533377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidic device enabling deterministic single cell trapping and release.
    Chai H; Feng Y; Liang F; Wang W
    Lab Chip; 2021 Jun; 21(13):2486-2494. PubMed ID: 34047733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tapered Microfluidic for Continuous Micro-Object Separation Based on Hydrodynamic Principle.
    Ahmad IL; Ahmad MR; Takeuchi M; Nakajima M; Hasegawa Y
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1413-1421. PubMed ID: 29293427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles.
    Yang D; Ai Y
    Lab Chip; 2019 Nov; 19(21):3609-3617. PubMed ID: 31517354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degas-Driven Deterministic Lateral Displacement in Poly(dimethylsiloxane) Microfluidic Devices.
    Tottori N; Nisisako T
    Anal Chem; 2019 Feb; 91(4):3093-3100. PubMed ID: 30672690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.