These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 35237889)

  • 1. Gene fusions and oncogenic mutations in MLH1 deficient and BRAFV600E wild-type colorectal cancers.
    Ukkola I; Nummela P; Kero M; Tammio H; Tuominen J; Kairisto V; Kallajoki M; Haglund C; Peltomäki P; Kytölä S; Ristimäki A
    Virchows Arch; 2022 Apr; 480(4):807-817. PubMed ID: 35237889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted next generation sequencing of MLH1-deficient, MLH1 promoter hypermethylated, and BRAF/RAS-wild-type colorectal adenocarcinomas is effective in detecting tumors with actionable oncogenic gene fusions.
    Vaňková B; Vaněček T; Ptáková N; Hájková V; Dušek M; Michal M; Švajdler P; Daum O; Daumová M; Michal M; Mezencev R; Švajdler M
    Genes Chromosomes Cancer; 2020 Oct; 59(10):562-568. PubMed ID: 32427409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NTRK gene rearrangements are highly enriched in MLH1/PMS2 deficient, BRAF wild-type colorectal carcinomas-a study of 4569 cases.
    Chou A; Fraser T; Ahadi M; Fuchs T; Sioson L; Clarkson A; Sheen A; Singh N; Corless CL; Gill AJ
    Mod Pathol; 2020 May; 33(5):924-932. PubMed ID: 31792356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MSI-High RAS-BRAF wild-type colorectal adenocarcinomas with MLH1 loss have a high frequency of targetable oncogenic gene fusions whose diagnoses are feasible using methods easy-to-implement in pathology laboratories.
    Bocciarelli C; Caumont C; Samaison L; Cariou M; Aline-Fardin A; Doucet L; Roudié J; Terris B; Merlio JP; Marcorelles P; Cappellen D; Uguen A
    Hum Pathol; 2021 Aug; 114():99-109. PubMed ID: 34019865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive analysis of oncogenic fusions in mismatch repair deficient colorectal carcinomas by sequential DNA and RNA next generation sequencing.
    Wang J; Li R; Li J; Yi Y; Liu X; Chen J; Zhang H; Lu J; Li C; Wu H; Liang Z
    J Transl Med; 2021 Oct; 19(1):433. PubMed ID: 34657620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pan-Trk Immunohistochemistry Is an Efficient and Reliable Screen for the Detection of NTRK Fusions.
    Hechtman JF; Benayed R; Hyman DM; Drilon A; Zehir A; Frosina D; Arcila ME; Dogan S; Klimstra DS; Ladanyi M; Jungbluth AA
    Am J Surg Pathol; 2017 Nov; 41(11):1547-1551. PubMed ID: 28719467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of NTRK gene fusions in lung adenocarcinomas in the Chinese population.
    Zhao R; Yao F; Xiang C; Zhao J; Shang Z; Guo L; Ding W; Ma S; Yu A; Shao J; Zhu L; Han Y
    J Pathol Clin Res; 2021 Jul; 7(4):375-384. PubMed ID: 33768710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pan-tropomyosin receptor kinase immunohistochemistry is a feasible routine screening strategy for NTRK fusions in mismatch repair-deficient colorectal carcinomas.
    Zhang Z; Pang J; Chen L; Chen J; Li J; Liu H; Wang J; Wu H; Liang Z
    Hum Pathol; 2022 Nov; 129():21-31. PubMed ID: 35977594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NTRK oncogenic fusions are exclusively associated with the serrated neoplasia pathway in the colorectum and begin to occur in sessile serrated lesions.
    Kim JH; Hong JH; Choi YL; Lee JA; Seo MK; Lee MS; An SB; Sung MJ; Cho NY; Kim SS; Shin YK; Kim S; Kang GH
    J Pathol; 2021 Dec; 255(4):399-411. PubMed ID: 34402529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pan-tumor screening for NTRK gene fusions using pan-TRK immunohistochemistry and RNA NGS fusion panel testing.
    Koehne de González A; Mansukhani MM; Fernandes H; Hsiao SJ
    Cancer Genet; 2022 Apr; 262-263():47-52. PubMed ID: 35007853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadening the spectrum of NTRK rearranged mesenchymal tumors and usefulness of pan-TRK immunohistochemistry for identification of NTRK fusions.
    Brčić I; Godschachner TM; Bergovec M; Igrec J; Till H; Lackner H; Scheipl S; Kashofer K; Brodowicz T; Leithner A; Szkandera J; Liegl-Atzwanger B
    Mod Pathol; 2021 Feb; 34(2):396-407. PubMed ID: 32860002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of NTRK fusions in glioblastoma: fluorescent in situ hybridisation is more useful than pan-TRK immunohistochemistry as a screening tool prior to RNA sequencing.
    Bourhis A; Caumont C; Quintin-Roué I; Magro E; Dissaux G; Remoué A; Le Noac'h P; Douet-Guilbert N; Seizeur R; Tyulyandina A; Schick U; Merlio JP; Marcorelles P; Cappellen D; Uguen A
    Pathology; 2022 Feb; 54(1):55-62. PubMed ID: 34518039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of NTRK1/3 Rearrangements in Papillary Thyroid Carcinoma Using Immunohistochemistry, Fluorescent In Situ Hybridization, and Next-Generation Sequencing.
    Lee YC; Chen JY; Huang CJ; Chen HS; Yang AH; Hang JF
    Endocr Pathol; 2020 Dec; 31(4):348-358. PubMed ID: 32880785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elaboration of NTRK-rearranged colorectal cancer: Integration of immunoreactivity pattern, cytogenetic identity, and rearrangement variant.
    Wu S; Liu Y; Shi X; Zhou W; Zeng X
    Dig Liver Dis; 2023 Dec; 55(12):1757-1764. PubMed ID: 37142453
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Mulkidjan RS; Saitova ES; Preobrazhenskaya EV; Asadulaeva KA; Bubnov MG; Otradnova EA; Terina DM; Shulga SS; Martynenko DE; Semina MV; Belogubova EV; Tiurin VI; Amankwah PS; Martianov AS; Imyanitov EN
    Int J Mol Sci; 2023 Sep; 24(17):. PubMed ID: 37686416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MLH1/PMS2 Expression Could Tell Classical NTRK Fusion in Fluorescence
    Fu Y; Li Z; Gao F; Yang J; Wu H; Zhang B; Pu X; Fan X
    Front Oncol; 2021; 11():669197. PubMed ID: 33996597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prevalence and detection methodology for preliminary exploration of NTRK fusion in gastric cancer from a single-center retrospective cohort.
    Dong K; Yin L; Wang Y; Jia L; Diao X; Huang X; Zhou L; Lin D; Sun Y
    Hum Pathol; 2024 Jun; 148():87-92. PubMed ID: 38653403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurotrophic tyrosine receptor kinase gene fusions in adult and pediatric patients with solid tumors: a clinicogenomic biobank and record linkage study of expression frequency and patient characteristics from Finland.
    Zhang W; Schmitz AA; Kallionpää RE; Perälä M; Pitkänen N; Tukiainen M; Alanne E; Jöhrens K; Schulze-Rath R; Farahmand B; Zong J
    Acta Oncol; 2024 Jul; 63():542-551. PubMed ID: 38967220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colorectal Carcinomas Containing Hypermethylated MLH1 Promoter and Wild-Type BRAF/KRAS Are Enriched for Targetable Kinase Fusions.
    Cocco E; Benhamida J; Middha S; Zehir A; Mullaney K; Shia J; Yaeger R; Zhang L; Wong D; Villafania L; Nafa K; Scaltriti M; Drilon A; Saltz L; Schram AM; Stadler ZK; Hyman DM; Benayed R; Ladanyi M; Hechtman JF
    Cancer Res; 2019 Mar; 79(6):1047-1053. PubMed ID: 30643016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prevalence of recurrent oncogenic fusion in mismatch repair-deficient colorectal carcinoma with hypermethylated MLH1 and wild-type BRAF and KRAS.
    Wang J; Yi Y; Xiao Y; Dong L; Liang L; Teng L; Ying JM; Lu T; Liu Y; Guan Y; Pang J; Zhou L; Lu J; Zhang Z; Liu X; Liang X; Zeng X; Yi X; Zhou W; Xia X; Yang L; Zhang J; Kopetz S; Futreal PA; Wu H; Liang Z
    Mod Pathol; 2019 Jul; 32(7):1053-1064. PubMed ID: 30723297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.