These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35238005)

  • 41. Visualizing three-dimensional fungal growth using light sheet fluorescence microscopy.
    Gutiérrez-Medina B; Vázquez-Villa A
    Fungal Genet Biol; 2021 May; 150():103549. PubMed ID: 33675987
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Accurate quantification of atherosclerotic plaque volume by 3D vascular ultrasound using the volumetric linear array method.
    López-Melgar B; Fernández-Friera L; Sánchez-González J; Vilchez JP; Cecconi A; Mateo J; Peñalvo JL; Oliva B; García-Ruiz JM; Kauffman S; Jiménez-Borreguero LJ; Ruiz-Cabello J; Fernández-Ortiz A; Ibáñez B; Fuster V
    Atherosclerosis; 2016 May; 248():230-7. PubMed ID: 27038420
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Light-Sheet Fluorescence Microscopy: Chemical Clearing and Labeling Protocols for Ultramicroscopy.
    Jährling N; Becker K; Saghafi S; Dodt HU
    Methods Mol Biol; 2017; 1563():33-49. PubMed ID: 28324600
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 3D Imaging and Quantitative Analysis of Vascular Networks: A Comparison of Ultramicroscopy and Micro-Computed Tomography.
    Epah J; Pálfi K; Dienst FL; Malacarne PF; Bremer R; Salamon M; Kumar S; Jo H; Schürmann C; Brandes RP
    Theranostics; 2018; 8(8):2117-2133. PubMed ID: 29721067
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A "Clearer" View of Pancreatic Pathology: A Review of Tissue Clearing and Advanced Microscopy Techniques.
    Hong SM; Noë M; Hruban CA; Thompson ED; Wood LD; Hruban RH
    Adv Anat Pathol; 2019 Jan; 26(1):31-39. PubMed ID: 30256228
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Three-dimensional reconstruction of coronary arteries and plaque morphology using CT angiography--comparison and registration with IVUS.
    Athanasiou L; Rigas G; Sakellarios AI; Exarchos TP; Siogkas PK; Bourantas CV; Garcia-Garcia HM; Lemos PA; Falcao BA; Michalis LK; Parodi O; Vozzi F; Fotiadis DI
    BMC Med Imaging; 2016 Jan; 16():9. PubMed ID: 26785613
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-risk plaque features can be detected in non-stenotic carotid plaques of patients with ischaemic stroke classified as cryptogenic using combined (18)F-FDG PET/MR imaging.
    Hyafil F; Schindler A; Sepp D; Obenhuber T; Bayer-Karpinska A; Boeckh-Behrens T; Höhn S; Hacker M; Nekolla SG; Rominger A; Dichgans M; Schwaiger M; Saam T; Poppert H
    Eur J Nucl Med Mol Imaging; 2016 Feb; 43(2):270-279. PubMed ID: 26433367
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Progressive changes of elastic moduli of arterial wall and atherosclerotic plaque components during plaque development in human coronary arteries.
    Rezvani-Sharif A; Tafazzoli-Shadpour M; Avolio A
    Med Biol Eng Comput; 2019 Mar; 57(3):731-740. PubMed ID: 30374700
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cathepsin Activity-Based Probes and Inhibitor for Preclinical Atherosclerosis Imaging and Macrophage Depletion.
    Abd-Elrahman I; Kosuge H; Wises Sadan T; Ben-Nun Y; Meir K; Rubinstein C; Bogyo M; McConnell MV; Blum G
    PLoS One; 2016; 11(8):e0160522. PubMed ID: 27532109
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improved label-free diagnostics and pathological assessment of atherosclerotic plaques through nonlinear microscopy.
    Baria E; Nesi G; Santi R; Maio V; Massi D; Pratesi C; Cicchi R; Pavone FS
    J Biophotonics; 2018 Nov; 11(11):e201800106. PubMed ID: 29931805
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Direct visualization of atherosclerosis in small coronary arteries using the epifluorescence stereoscope.
    Hayashi J; Saito T; Sato H; Kuroiwa Y; Aizawa K
    Cardiovasc Res; 1995 Nov; 30(5):775-80. PubMed ID: 8595626
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Freehand three-dimensional ultrasound imaging of carotid artery using motion tracking technology.
    Chung SW; Shih CC; Huang CC
    Ultrasonics; 2017 Feb; 74():11-20. PubMed ID: 27721196
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanoparticles targeting extra domain B of fibronectin-specific to the atherosclerotic lesion types III, IV, and V-enhance plaque detection and cargo delivery.
    Yu M; Ortega CA; Si K; Molinaro R; Schoen FJ; Leitao RFC; Xu X; Mahmoudi M; Ahn S; Liu J; Saw PE; Lee IH; Brayner MMB; Lotfi A; Shi J; Libby P; Jon S; Farokhzad OC
    Theranostics; 2018; 8(21):6008-6024. PubMed ID: 30613278
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Guide to Perform 3D Histology of Biological Tissues with Fluorescence Microscopy.
    Laurino A; Franceschini A; Pesce L; Cinci L; Montalbano A; Mazzamuto G; Sancataldo G; Nesi G; Costantini I; Silvestri L; Pavone FS
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047724
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recent Advances in Fluorescent Angioscopy for Molecular Imaging of Human Atherosclerotic Coronary Plaque.
    Uchida Y
    J Atheroscler Thromb; 2017 Jun; 24(6):539-551. PubMed ID: 28381766
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Imaging the developing human external and internal urogenital organs with light sheet fluorescence microscopy.
    Isaacson D; McCreedy D; Calvert M; Shen J; Sinclair A; Cao M; Li Y; McDevitt T; Cunha G; Baskin L
    Differentiation; 2020; 111():12-21. PubMed ID: 31634681
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multi-modal optical imaging characterization of atherosclerotic plaques.
    Gubarkova EV; Dudenkova VV; Feldchtein FI; Timofeeva LB; Kiseleva EB; Kuznetsov SS; Shakhov BE; Moiseev AA; Gelikonov VM; Gelikonov GV; Vitkin A; Gladkova ND
    J Biophotonics; 2016 Oct; 9(10):1009-1020. PubMed ID: 26604168
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Dual source computed tomography in analysis of significance and morphology carotid plaques].
    Witkiewicz W; Klimeczek P; Iwanowski W; Pasicka B; Dołega-Kozierowski B; Drelichowski S; Dyś K; Zaleska-Dorobisz U
    Przegl Lek; 2013; 70(3):118-22. PubMed ID: 24003664
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plaque Morphologic Quantification Reliability of 3D Whole-Brain Vessel Wall Imaging in Patients With Intracranial Atherosclerotic Disease: A Comparison With Conventional 3D Targeted Vessel Wall Imaging.
    Zhang N; Liu X; Xiao J; Song SS; Fan Z
    J Magn Reson Imaging; 2021 Jul; 54(1):166-174. PubMed ID: 33586289
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lipid-Activatable Fluorescent Probe for Intraoperative Imaging of Atherosclerotic Plaque Using In Situ Patch.
    Zheng J; Zhao S; Mao Y; Du Z; Li G; Sang M
    Small; 2022 Feb; 18(5):e2104471. PubMed ID: 34837454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.