BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 35238181)

  • 1. Clinical magnetic hyperthermia requires integrated magnetic particle imaging.
    Healy S; Bakuzis AF; Goodwill PW; Attaluri A; Bulte JWM; Ivkov R
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2022 May; 14(3):e1779. PubMed ID: 35238181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic Particle Imaging-Guided Hyperthermia for Precise Treatment of Cancer: Review, Challenges, and Prospects.
    Lei S; He J; Gao P; Wang Y; Hui H; An Y; Tian J
    Mol Imaging Biol; 2023 Dec; 25(6):1020-1033. PubMed ID: 37789103
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Buchholz O; Sajjamark K; Franke J; Wei H; Behrends A; Münkel C; Grüttner C; Levan P; von Elverfeldt D; Graeser M; Buzug T; Bär S; Hofmann UG
    Theranostics; 2024; 14(1):324-340. PubMed ID: 38164157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining magnetic particle imaging and magnetic fluid hyperthermia for localized and image-guided treatment.
    Lu Y; Rivera-Rodriguez A; Tay ZW; Hensley D; Fung KLB; Colson C; Saayujya C; Huynh Q; Kabuli L; Fellows B; Chandrasekharan P; Rinaldi C; Conolly S
    Int J Hyperthermia; 2020 Dec; 37(3):141-154. PubMed ID: 33426994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining magnetic particle imaging and magnetic fluid hyperthermia in a theranostic platform.
    Hensley D; Tay ZW; Dhavalikar R; Zheng B; Goodwill P; Rinaldi C; Conolly S
    Phys Med Biol; 2017 May; 62(9):3483-3500. PubMed ID: 28032621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization and Design of Magnetic Ferrite Nanoparticles with Uniform Tumor Distribution for Highly Sensitive MRI/MPI Performance and Improved Magnetic Hyperthermia Therapy.
    Du Y; Liu X; Liang Q; Liang XJ; Tian J
    Nano Lett; 2019 Jun; 19(6):3618-3626. PubMed ID: 31074627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lissajous scanning magnetic particle imaging as a multifunctional platform for magnetic hyperthermia therapy.
    Wells J; Twamley S; Sekar A; Ludwig A; Paysen H; Kosch O; Wiekhorst F
    Nanoscale; 2020 Sep; 12(35):18342-18355. PubMed ID: 32869808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic particle imaging for assessment of cerebral perfusion and ischemia.
    Ludewig P; Graeser M; Forkert ND; Thieben F; Rández-Garbayo J; Rieckhoff J; Lessmann K; Förger F; Szwargulski P; Magnus T; Knopp T
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2022 Jan; 14(1):e1757. PubMed ID: 34617413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrable Magnetic Fluid Hyperthermia Systems for 3D Magnetic Particle Imaging.
    Behrends A; Wei H; Neumann A; Friedrich T; Bakenecker AC; Franke J; Sajjamark K; Buchholz O; Bär S; Hofmann UG; Graeser M; Buzug TM
    Nanotheranostics; 2024; 8(2):163-178. PubMed ID: 38444740
    [No Abstract]   [Full Text] [Related]  

  • 10. Magnetic nanoparticle-induced hyperthermia with appropriate payloads: Paul Ehrlich's "magic (nano)bullet" for cancer theranostics?
    Datta NR; Krishnan S; Speiser DE; Neufeld E; Kuster N; Bodis S; Hofmann H
    Cancer Treat Rev; 2016 Nov; 50():217-227. PubMed ID: 27756009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications.
    Chandrasekharan P; Tay ZW; Hensley D; Zhou XY; Fung BK; Colson C; Lu Y; Fellows BD; Huynh Q; Saayujya C; Yu E; Orendorff R; Zheng B; Goodwill P; Rinaldi C; Conolly S
    Theranostics; 2020; 10(7):2965-2981. PubMed ID: 32194849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fe
    Li Y; Zhang H
    Nanomedicine (Lond); 2019 Jun; 14(11):1493-1512. PubMed ID: 31215317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Embracing Defects and Disorder in Magnetic Nanoparticles.
    Lak A; Disch S; Bender P
    Adv Sci (Weinh); 2021 Apr; 8(7):2002682. PubMed ID: 33854879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous temperature and viscosity estimation capability via magnetic nanoparticle relaxation.
    Utkur M; Saritas EU
    Med Phys; 2022 Apr; 49(4):2590-2601. PubMed ID: 35103333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer.
    Hervault A; Thanh NT
    Nanoscale; 2014 Oct; 6(20):11553-73. PubMed ID: 25212238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review on numerical modeling for magnetic nanoparticle hyperthermia: Progress and challenges.
    Raouf I; Khalid S; Khan A; Lee J; Kim HS; Kim MH
    J Therm Biol; 2020 Jul; 91():102644. PubMed ID: 32716885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal potentiation of chemotherapy by magnetic nanoparticles.
    Torres-Lugo M; Rinaldi C
    Nanomedicine (Lond); 2013 Oct; 8(10):1689-707. PubMed ID: 24074390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.
    Wang C; Hsu CH; Li Z; Hwang LP; Lin YC; Chou PT; Lin YY
    Int J Nanomedicine; 2017; 12():6273-6287. PubMed ID: 28894366
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Rodrigues HF; Capistrano G; Bakuzis AF
    Int J Hyperthermia; 2020 Dec; 37(3):76-99. PubMed ID: 33426989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic nanocarriers: Evolution of spinel ferrites for medical applications.
    Amiri M; Salavati-Niasari M; Akbari A
    Adv Colloid Interface Sci; 2019 Mar; 265():29-44. PubMed ID: 30711796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.