BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 35238181)

  • 21. Magnetic particle hyperthermia--a promising tumour therapy?
    Dutz S; Hergt R
    Nanotechnology; 2014 Nov; 25(45):452001. PubMed ID: 25337919
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fe
    Lu Q; Dai X; Zhang P; Tan X; Zhong Y; Yao C; Song M; Song G; Zhang Z; Peng G; Guo Z; Ge Y; Zhang K; Li Y
    Int J Nanomedicine; 2018; 13():2491-2505. PubMed ID: 29719396
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance.
    Dadfar SM; Camozzi D; Darguzyte M; Roemhild K; Varvarà P; Metselaar J; Banala S; Straub M; Güvener N; Engelmann U; Slabu I; Buhl M; van Leusen J; Kögerler P; Hermanns-Sachweh B; Schulz V; Kiessling F; Lammers T
    J Nanobiotechnology; 2020 Jan; 18(1):22. PubMed ID: 31992302
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles.
    Rodríguez-Luccioni HL; Latorre-Esteves M; Méndez-Vega J; Soto O; Rodríguez AR; Rinaldi C; Torres-Lugo M
    Int J Nanomedicine; 2011; 6():373-80. PubMed ID: 21499427
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review.
    Suriyanto ; Ng EY; Kumar SD
    Biomed Eng Online; 2017 Mar; 16(1):36. PubMed ID: 28335790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia.
    Blanco-Andujar C; Walter A; Cotin G; Bordeianu C; Mertz D; Felder-Flesch D; Begin-Colin S
    Nanomedicine (Lond); 2016 Jul; 11(14):1889-910. PubMed ID: 27389703
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetic fluid hyperthermia enhances cytotoxicity of bortezomib in sensitive and resistant cancer cell lines.
    Alvarez-Berríos MP; Castillo A; Rinaldi C; Torres-Lugo M
    Int J Nanomedicine; 2014; 9():145-53. PubMed ID: 24379665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetic mesoporous silica nanoparticles for potential delivery of chemotherapeutic drugs and hyperthermia.
    Tao C; Zhu Y
    Dalton Trans; 2014 Nov; 43(41):15482-90. PubMed ID: 25190592
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The use of magnetic nanoparticles in cancer theranostics: Toward handheld diagnostic devices.
    Hajba L; Guttman A
    Biotechnol Adv; 2016; 34(4):354-361. PubMed ID: 26853617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of magnetic field hyperthermia and superparamagnetic iron oxide nanoparticles to HIV-1-specific T-cell cytotoxicity.
    Williams JP; Southern P; Lissina A; Christian HC; Sewell AK; Phillips R; Pankhurst Q; Frater J
    Int J Nanomedicine; 2013; 8():2543-54. PubMed ID: 23901272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetic nanoparticles in cancer therapy: how can thermal approaches help?
    Kolosnjaj-Tabi J; Wilhelm C
    Nanomedicine (Lond); 2017 Mar; 12(6):573-575. PubMed ID: 28244818
    [No Abstract]   [Full Text] [Related]  

  • 32. High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI).
    Bauer LM; Situ SF; Griswold MA; Samia AC
    Nanoscale; 2016 Jun; 8(24):12162-9. PubMed ID: 27210742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent advances in nanosized Mn-Zn ferrite magnetic fluid hyperthermia for cancer treatment.
    Lin M; Huang J; Sha M
    J Nanosci Nanotechnol; 2014 Jan; 14(1):792-802. PubMed ID: 24730298
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A review on hyperthermia via nanoparticle-mediated therapy.
    Sohail A; Ahmad Z; Bég OA; Arshad S; Sherin L
    Bull Cancer; 2017 May; 104(5):452-461. PubMed ID: 28385267
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cancer hyperthermia using magnetic nanoparticles.
    Kobayashi T
    Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mean-field and linear regime approach to magnetic hyperthermia of core-shell nanoparticles: can tiny nanostructures fight cancer?
    Carrião MS; Bakuzis AF
    Nanoscale; 2016 Apr; 8(15):8363-77. PubMed ID: 27046437
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnetic nanoparticles based cancer therapy: current status and applications.
    Zhang H; Liu XL; Zhang YF; Gao F; Li GL; He Y; Peng ML; Fan HM
    Sci China Life Sci; 2018 Apr; 61(4):400-414. PubMed ID: 29675551
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cancer Therapy; Prospects for Application of Nanoparticles for Magnetic-Based Hyperthermia.
    Rahban D; Doostan M; Salimi A
    Cancer Invest; 2020 Sep; 38(8-9):507-521. PubMed ID: 32870068
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery.
    Kumar CS; Mohammad F
    Adv Drug Deliv Rev; 2011 Aug; 63(9):789-808. PubMed ID: 21447363
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combining Bulk Temperature and Nanoheating Enables Advanced Magnetic Fluid Hyperthermia Efficacy on Pancreatic Tumor Cells.
    Engelmann UM; Roeth AA; Eberbeck D; Buhl EM; Neumann UP; Schmitz-Rode T; Slabu I
    Sci Rep; 2018 Sep; 8(1):13210. PubMed ID: 30181576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.