These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35238352)

  • 1. Performance scaling for structural MRI surface parcellations: a machine learning analysis in the ABCD Study.
    Hahn S; Owens MM; Yuan D; Juliano AC; Potter A; Garavan H; Allgaier N
    Cereb Cortex; 2022 Dec; 33(1):176-194. PubMed ID: 35238352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between gradients and parcellations for functional connectivity prediction of behavior.
    Kong R; Tan YR; Wulan N; Ooi LQR; Farahibozorg SR; Harrison S; Bijsterbosch JD; Bernhardt BC; Eickhoff S; Thomas Yeo BT
    Neuroimage; 2023 Jun; 273():120044. PubMed ID: 36940760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of functional MRI-based human brain parcellation: a review.
    Moghimi P; Dang AT; Do Q; Netoff TI; Lim KO; Atluri G
    J Neurophysiol; 2022 Jul; 128(1):197-217. PubMed ID: 35675446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain parcellation selection: An overlooked decision point with meaningful effects on individual differences in resting-state functional connectivity.
    Bryce NV; Flournoy JC; Guassi Moreira JF; Rosen ML; Sambook KA; Mair P; McLaughlin KA
    Neuroimage; 2021 Nov; 243():118487. PubMed ID: 34419594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using connectomics for predictive assessment of brain parcellations.
    Albers KJ; Ambrosen KS; Liptrot MG; Dyrby TB; Schmidt MN; Mørup M
    Neuroimage; 2021 Sep; 238():118170. PubMed ID: 34087365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing Connectivity-Driven Brain Parcellation Using Ensemble Clustering.
    Kurmukov A; Mussabaeva A; Denisova Y; Moyer D; Jahanshad N; Thompson PM; Gutman BA
    Brain Connect; 2020 May; 10(4):183-194. PubMed ID: 32264696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating brain parcellations using the distance-controlled boundary coefficient.
    Zhi D; King M; Hernandez-Castillo CR; Diedrichsen J
    Hum Brain Mapp; 2022 Aug; 43(12):3706-3720. PubMed ID: 35451538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. sGraSP: A graph-based method for the derivation of subject-specific functional parcellations of the brain.
    Honnorat N; Satterthwaite TD; Gur RE; Gur RC; Davatzikos C
    J Neurosci Methods; 2017 Feb; 277():1-20. PubMed ID: 27913211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolution-based spectral clustering for brain parcellation using functional MRI.
    Dillon K; Wang YP
    J Neurosci Methods; 2020 Apr; 335():108628. PubMed ID: 32035090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cohesive parcellation of the human brain using resting-state fMRI.
    Nemani A; Lowe MJ
    J Neurosci Methods; 2022 Jul; 377():109629. PubMed ID: 35618164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving reliability of subject-level resting-state fMRI parcellation with shrinkage estimators.
    Mejia AF; Nebel MB; Shou H; Crainiceanu CM; Pekar JJ; Mostofsky S; Caffo B; Lindquist MA
    Neuroimage; 2015 May; 112():14-29. PubMed ID: 25731998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Test-retest reproducibility of white matter parcellation using diffusion MRI tractography fiber clustering.
    Zhang F; Wu Y; Norton I; Rathi Y; Golby AJ; O'Donnell LJ
    Hum Brain Mapp; 2019 Jul; 40(10):3041-3057. PubMed ID: 30875144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Big Data-Driven Brain Parcellation from fMRI: Impact of Cohort Heterogeneity on Functional Connectivity Maps.
    Brooks SJ; Parks SM; Stamoulis C
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3133-3136. PubMed ID: 34891905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring Individual-Level Variations in the Functional Parcellation of the Cerebral Cortex.
    Nie L; Matthews PM; Guo Y
    IEEE Trans Biomed Eng; 2016 Dec; 63(12):2505-2517. PubMed ID: 27875122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional parcellation using time courses of instantaneous connectivity.
    van Oort ESB; Mennes M; Navarro Schröder T; Kumar VJ; Zaragoza Jimenez NI; Grodd W; Doeller CF; Beckmann CF
    Neuroimage; 2018 Apr; 170():31-40. PubMed ID: 28716715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling somatotopic organization in the human brain using machine learning and adaptive supervoxel-based parcellations.
    See KB; Arpin DJ; Vaillancourt DE; Fang R; Coombes SA
    Neuroimage; 2021 Dec; 245():118710. PubMed ID: 34780917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bagging improves reproducibility of functional parcellation of the human brain.
    Nikolaidis A; Solon Heinsfeld A; Xu T; Bellec P; Vogelstein J; Milham M
    Neuroimage; 2020 Jul; 214():116678. PubMed ID: 32119986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex.
    Arslan S; Ktena SI; Makropoulos A; Robinson EC; Rueckert D; Parisot S
    Neuroimage; 2018 Apr; 170():5-30. PubMed ID: 28412442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive cortical parcellations for source reconstructed EEG/MEG connectomes.
    Farahibozorg SR; Henson RN; Hauk O
    Neuroimage; 2018 Apr; 169():23-45. PubMed ID: 28893608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic evaluation of machine learning algorithms for neuroanatomically-based age prediction in youth.
    Modabbernia A; Whalley HC; Glahn DC; Thompson PM; Kahn RS; Frangou S
    Hum Brain Mapp; 2022 Dec; 43(17):5126-5140. PubMed ID: 35852028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.